

Simulated Annealing Like probabilistic hill climbing. Allows for the possibility of escaping from local optima. Optimum means "lowest potential energy" state. S.A. is based on an analogy to a metallurgical process called annealing.

Problem Representati	on
Each individual: A list of 5 cities, repetitions permitted. e.g., (SEATTLE, SEATTLE, SPOKANE, SPOKANE, SPOKANE)	
10000	
Fitness function: $f(x) = \frac{1}{2 f_1(x) + 50 f_2(x)}$	
Path cost: $f_{i}(x) = \sum_{i=0}^{4} dist(x[i], x[i+1 \mod 5])$	
Non-tour penalty: $f_2(x) = 100 (Cities - cities(x) + cities(x) - Cities)$ where "-" denotes set difference and s denotes cardinality.	
CSE 415, Univ. of Wash. Adv. Search: Genetic, Sim. Annealing, Case-Based Reasoning	20

