
3/25/2017

1

Ps
Production
Systems

Production Systems Architecture
and Implementing Conversational
Agents

CSE 415: Introduction to Artificial Intelligence
University of Washington
Spring, 2017

© S. Tanimoto and University of Washington, 2017

Ps
Production
Systems

Ps
Production
Systems

CSE 415, Univ. of Wash., 2016

Outline

Production Systems Architecture 2

• Production Systems Architecture
• Production System Form
• Example: Conversion to Roman Numerals
• Ordered vs. Unordered Production Systems
• Discrimination Nets
• Weizenbaum's ELIZA and the SHRINK.
• Implementation Issues, Using Python

Ps
Production
Systems

Ps
Production
Systems

CSE 415, Univ. of Wash., 2016

Production System Architecture

Production Systems Architecture 3

Ps
Production
Systems

Ps
Production
Systems

CSE 415, Univ. of Wash., 2016

Production System Form

Production Systems Architecture 4

A rule of the form G if [condition] then [action] is
sometimes called a production rule.

Python’s if statement can be used to implement rule
testing and application.

If input=='Why?': return explain()

Ps
Production
Systems

Ps
Production
Systems

CSE 415, Univ. of Wash., 2016

Example: Conversion to Roman
Numerals

Production Systems Architecture 5

0 =
1 = I
2 = II
3 = III
4 = IV
5 = V
6 = VI
7 = VII
8 = VIII
9 = IX
10 = X

11 = XI
12 = XII
13 = XIII
14 = XIV
15 = XV
16 = XVI
17 = XVII
18 = XVIII
19 = XIX
20 = XX

30 = XXX
40 = XL
50 = L
60 = LX
70 = LXX
80 =
LXXX
90 = XC
100 = C
500 = D
1000 = M

Ps
Production
Systems

Ps
Production
Systems

CSE 415, Univ. of Wash., 2016

Example Production System

Production Systems Architecture 6

If x is null, then prompt the user and read x.
If x is not null and is bigger than 39, then print ``too big''

and make x null.
If x is not null and is between 10 and 39, then print ``X''

and reduce x by 10.
If x is not null and is equal to 9, then print ``IX''

and reduce x to 0.
If x is not null and is between 5 and 8, then print ``V''

and reduce x by 5.
If x is not null and is equal to 4, then print ``IV''

and reduce x to 0.
If x is not null and is between 1 and 3, then print ``I''
If x is not null and is between 1 and 3, then print ``I''

and reduce x by 1.
If x is not null and is equal to 0,

then print an end-of-line and make x null.

3/25/2017

2

Ps
Production
Systems

Ps
Production
Systems

CSE 415, Univ. of Wash., 2016

Ordered vs Unordered
Production Systems

Production Systems Architecture 7

We’ve just seen an “unordered” production system.
Permuting the rules does not change the behavior of an
unordered system.
• Easy to add new rules, remove rules
• Condition testing typically is redundant

In an ordered system, the rule order is important and errors
might occur if the rules are permuted.
• Harder to add and remove rules without breaking the system
• Condition testing is less redundant

Ps
Production
Systems

Ps
Production
Systems

CSE 415, Univ. of Wash., 2016

Python Implementation of an
Ordered Production System

Production Systems Architecture 8

Roman2.py
def Roman2():

"""Roman numeral conversion with ordered Production System"""
x = ''; ans = ''
while True:

if x=='': x = input('Enter number: ')
elif x > 39:

print('too big'); x = ''
elif x > 9:

ans += 'X'; x -= 10
elif x == 9:

ans += 'IX'; x = 0
elif x > 4:

ans += 'V'; x -= 5
elif x == 4:

ans += 'IV'; x = 0
elif x > 0:

ans += 'I'; x -= 1
elif x == 0:

print(ans); x = ''; ans = ''
else: print('bad number'); break

Ps
Production
Systems

Ps
Production
Systems

CSE 415, Univ. of Wash., 2016

Discrimination Nets

Production Systems Architecture 9

In order to speed up condition testing,
Structure the search for a matching condition as a tree search rather than a linear
search.

Ps
Production
Systems

Ps
Production
Systems

CSE 415, Univ. of Wash., 2016

Application to Dialog-Style
Interaction

Production Systems Architecture 10

The ELIZA program was written by Joseph Weizenbaum at
the Massachusetts Institute of Technology’s Artificial
Intelligence Lab in the late 1960s.

It was written in Lisp, and demonstrated how, through
clever pattern matching and phrase transformation, an
illusion of an intelligent agent could be created.

Ps
Production
Systems

Ps
Production
Systems

CSE 415, Univ. of Wash., 2016

The Shrink

Production Systems Architecture 11

The Shrink is a small program modeled after
Weizenbaum’s ELIZA program to demonstrate production-
system programming.

This version of the Shrink is written in Python, and works
by converting the user’s raw string inputs into lists of
words. It then looks for particular words in these word
lists.

Ps
Production
Systems

Ps
Production
Systems

CSE 415, Univ. of Wash., 2016

Application to Dialog-Style
Interaction

Production Systems Architecture 12

User: “I am full of anticipation.”
Shrink: “Please tell me why you are full of anticipation.”

The Shrink’s production rule, in Python:

if wordlist[0:2] == ['i','am']:
print("Please tell me why you are " +\

stringify(mapped_wordlist[2:]) + '.')
return

3/25/2017

3

Ps
Production
Systems

Ps
Production
Systems

CSE 415, Univ. of Wash., 2016

Implementation Issues in the Shrink

Production Systems Architecture 13

Input of raw strings and conversion to word lists.

the_input = input('TYPE HERE:>> ')
if match('bye',the_input):

print('Goodbye!')
return

wordlist = remove_punctuation(the_input). split(' ')

Ps
Production
Systems

Ps
Production
Systems

CSE 415, Univ. of Wash., 2016

Implementation Issues in the Shrink
(continued)

Production Systems Architecture 14

Use of regular expressions.

from re import * # regular expression module.

punctuation_pattern = compile(r"\,|\.|\?|\!|\;|\:")

def remove_punctuation(text):
'Returns a string without any punctuation.'
return sub(punctuation_pattern,'', text)

Ps
Production
Systems

Ps
Production
Systems

CSE 415, Univ. of Wash., 2016

Implementation Issues in the Shrink
(continued)

Production Systems Architecture 15

Pronoun and verb case transformation.

CASE_MAP = {'i':'you', 'I':'you', 'me':'you','you':'me',
'my':'your', 'your':'my', 'yours':'mine', 'mine':'yours',
'am':'are'}

def you_me(w):
'Changes a word from 1st to 2nd person or vice-versa.'
try:

result = CASE_MAP[w]
except KeyError:

result = w
return result

def you_me_map(wordlist):
'Applies YOU-ME to a whole sentence or phrase.'
return list(map(you_me, wordlist))

Ps
Production
Systems

Ps
Production
Systems

CSE 415, Univ. of Wash., 2016

Implementation Issues in the Shrink
(continued)

Production Systems Architecture 16

Output formatting (with functional programming)

from functools import reduce
def stringify(list):

'''Create a string from the list,
but with spaces between words.'''

if len(list) == 0: return ""
if len(list) == 1: return list[0]
If more than 1 element,
put spaces between adjacent pairs:
return list[0] +\

reduce(lambda y,z: y+z,\
map(lambda x: ' ' + x, list[1:]))

>>> stringify(['A','big','fox'])
'A big fox'

