
3/25/2017

1

Py
Python

Python: An Introduction

CSE 415: Introduction to Artificial Intelligence
University of Washington
Spring, 2017

© S. Tanimoto and University of Washington, 2017

Py
Python Why Python?

Python: An Introduction 2CSE 415, Univ. of Wash.

Python supports features needed in AI programming.

Python is increasingly popular, and high-quality, free tools are readily
available.

Python’s syntax means its code tends to be more readable than code in other
languages.

Python has some advantages over Lisp in string processing and user-interface
construction.

With the Python 3.x generation, the language is cleaner and more efficient.

Py
Python Nice Things About Python for AI

• Supports rapid prototyping
– Concise; minimal demands for declaration
– Supports alternative ways of thinking; multiparadigm:

• Imperative
• Functional
• Object-oriented
• Scripting

– Good tools are available: IDLE, PyCharm, PyDev, Emacs

Python: An Introduction 3CSE 415, Univ. of Wash.

Py
Python More Nice Things

• Simple Syntax
– Use of indentation to group program blocks
– Readable but flexible

• Clean
– Safer than Perl

• Free, open
• Cross-platform

– Windows, OS/X, Linux
– Jython: applets, Swing, and other Java libraries

• Rich Resources Available
– Modules, often very efficient (coded in C).
– Great community

• Can be run in web browsers: Brython, Skulpt.

Python: An Introduction 4CSE 415, Univ. of Wash.

Py
Python Getting Started

• Download and install Python 3.6 and IDLE from

www.python.org on your own computer.

• Optionally install Emacs, or Eclipse/PyDev or

PyCharm from JetBrains.com.

• Read “Python as a Second Language.”

• Browse some of the online Python resources,

such as G. van Rossum’s tutorial.

• Work on Assignment 1.

Python: An Introduction 5CSE 415, Univ. of Wash.

Py
Python Data Types

Python: An Introduction 6CSE 415, Univ. of Wash.

• int 105
• float 3.52
• str "text", 'apple'
• list ['apple', 'banana', 'orange']
• bool True, False
• tuple ('apple', 'banana', 'orange')
• dict {'one': 1, 'two': 2}
• function lambda x: 2*x
• builtin_function_or_method math.sqrt

3/25/2017

2

Py
Python Interacting with Python

>>> 5 + 7
12
>>> x = 3
>>> x * x
9
>>> s = 'apple'
>>> s+s
'appleapple'
>>> s2 = """Two line
string"""

Python: An Introduction 7CSE 415, Univ. of Wash.

Py
Python Defining Functions

Python: An Introduction 8CSE 415, Univ. of Wash.

def sqr(x):
return x*x

sqr(5)
25

sqr(25)
625

sqr(1.5)
2.25

Py
Python Defining Recursive Functions

Python: An Introduction 9CSE 415, Univ. of Wash.

def fact(n):
if n==1:

return 1
else:

return n * fact(n-1)

fact(5)
120

Py
Python Scopes of Bindings

Python: An Introduction 10CSE 415, Univ. of Wash.

x = 5
y = 6
z = 7
def foo(x):

global y
z = x + y
return z

w = foo(4)
w
x
y
z

Py
Python Lists

Python: An Introduction 11CSE 415, Univ. of Wash.

• Lists are sequences of elements separated by
commas and surrounded by square brackets.

• ['a', 'b', 'c']

• [0, 1, 2]

• ['testing', 1, 2, 3]

• []

Py
Python List Elements

Python: An Introduction 12CSE 415, Univ. of Wash.

List elements may be extracted with an index in square brackets.

>>> L = ['a', 'b', 'c']
>>> L[0]
'a'
>>> L[1]
'b'
>>> L[2]
'c'
>>> L[-1]
'c'

Lists are “zero-based”; indices start at 0. Negative indices work
right-to-left.

3/25/2017

3

Py
Python Slices

Python: An Introduction 13CSE 415, Univ. of Wash.

Sublists are expressed using “slice” notation.

>>> L2 = ['a', 'b', 'c', 'd', 'e']
>>> L2[2:4]
['c', 'd']
>>> L2[1:]
['b', 'c', 'd', 'e']
>>> L2[:3]
['a', 'b', 'c']
>>> L2[::2]
['a', 'c', 'e']
>>> L2[:] # copies L2.

Slices are copies of their original lists or sublists.

Py
Python Strings

Python: An Introduction 14CSE 415, Univ. of Wash.

• Strings are sequences of characters surrounded
by quotations marks (or by apostrophes).

• "Hello"

• 'Hello'

• Multiline strings are delimited by pairs of triple
quotes (or apostrophes).
"""Line 1

Line 2

Line 3

"""

CSE 415, Univ. of Wash.

Py
Python String Elements

Python: An Introduction 15CSE 415, Univ. of Wash.

List elements may be extracted with an index in square brackets.

>>> S = "abc"
>>> S[0]
'a'
>>> S[1]
'b'
>>> S[2]
'c'
>>> S[-1]
'c'

Strings are “zero-based”; indices start at 0. Negative indices
work right-to-left.

Py
Python String Slices

Python: An Introduction 16CSE 415, Univ. of Wash.

Substrings are expressed using “slice” notation.

>>> S2 = 'abcde'
>>> S2[2:4]
'cd'
>>> S2[1:]
'bcde'
>>> S2[:3]
'abc'
>>> S2[::2]
'ace'
>>> S2[:]

Slices are copies of their original strings or substrings.

Py
Python Dictionaries

Python: An Introduction 17CSE 415, Univ. of Wash.

Dictionaries are mappings from keys to
values, implemented with hash tables.

>>> color = {}

>>> color['apple'] = 'red'

>>> color['kiwi'] = 'green'

>>> print(color['apple'])

'red'

Py
Python KeyError with Dictionaries

Python: An Introduction 18CSE 415, Univ. of Wash.

color = {}
color['apple'] = 'red'
color['kiwi'] = 'green'
fruit = 'banana'

try:
print(color[fruit])

except KeyError:
print("There is a problem with "+fruit +"!")

There is a problem with banana!

3/25/2017

4

Py
Python Functional Programming

Python: An Introduction 19CSE 415, Univ. of Wash.

• Functions can be values, i.e., assigned to variables,
elements of lists, etc.

• Functions can be arguments to other functions and
returned by functions.

• Functions can be synthesized at run-time.

• Functions can be explicitly applied to arguments.

• Functions do not have to have names.

• Functions tend, but don’t have to be, “pure,” meaning
without side effects and producing values that depend
only upon the values of their parameters (“referentially
transparent”).

Py
Python Anonymous Functions

Python: An Introduction 20CSE 415, Univ. of Wash.

First, here is a named function, named f:
>>> f = lambda x: x+5

>>> f(4)

9

>>> list(map(f, [0, 1, 2, 3, 4]))

[5, 6, 7, 8, 9]

Second, we use an anonymous function:
>>> list(map(lambda x: x*7, [0, 1, 2, 3, 4]))

[0, 7, 14, 21, 28]

Py
Python Runtime Creation of Functions

Python: An Introduction 21CSE 415, Univ. of Wash.

>>> def make_adder(y):

return lambda x: x + y

>>> f4 = make_adder(4)

>>> f4(5)

9

>>> f7 = make_adder(7)

>>> f7(11)

18

Py
Python Another Example

Python: An Introduction 22CSE 415, Univ. of Wash.

def make_quadratic_evaluator(a, b, c):

return lambda x: a*x*x + b*x + c

fsqr = make_quadratic_evaluator(1,0,0)

print fsqr(5)

25

Py
Python A Challenge…

Python: An Introduction 23CSE 415, Univ. of Wash.

Create a function that transforms other functions as follows.
>>> F1 = lambda n: n

>>> F2 = lambda n: n*n

>>> F3 = lambda n: n*n*n

>>> F1X = transform(F1)

>>> F1X(5)

11

>>> F2X = transform(F2)

>>> F2X(5)

61

>>> F3X = transform(F3)

>>> F3X(5)

341

Py
Python Hint

Python: An Introduction 24CSE 415, Univ. of Wash.

If F transforms n into F(n), then

FX transforms n into F(n) + F(n+1)

3/25/2017

5

Py
Python Five Ways to Create a List

Python: An Introduction 25CSE 415, Univ. of Wash.

>>> ['a', 'b', 'c', 'd'] # literal

['a', 'b', 'c', 'd']

>>> list(range(4)) # range function

[0, 1, 2, 3]

>>> 4*[0] # repeated
concatenation

[0, 0, 0, 0]

>>> "a b c d".split(" ") # string splitting

['a', 'b', 'c', 'd']

>>> [2*n for n in range(4)] # list comprehension

[0, 2, 4, 6]

