The $\alpha-\beta$ algorithm

function Alpha-Beta-Search(state) returns an action inputs: state, current state in game
$v \leftarrow \operatorname{Max}-\operatorname{ValuE}($ state $,-\infty,+\infty)$
return the action in SUCCESSORS(state) with value v
function Max-Value(state, α, β) returns a utility value
inputs: state, current state in game
α, the value of the best alternative for MAX along the path to state
β, the value of the best alternative for MIN along the path to state
if Terminal-Test(state) then return Utility(state)
$v \leftarrow-\infty$
for a, s in SUCCESSORS(state) do

$$
\begin{aligned}
& v \leftarrow \operatorname{Max}(v, \operatorname{Min}-\operatorname{VALUE}(s, \alpha, \beta)) \\
& \text { if } v \geq \beta \text { then return } v \quad \text { Cutoff }
\end{aligned}
$$

$$
\alpha \leftarrow \operatorname{MAX}(\alpha, v)
$$

return v

The $\alpha-\beta$ algorithm

function Min-Value(state, α, β) returns a utility value inputs: state, current state in game α, the value of the best alternative for MAX along the path to state β, the value of the best alternative for MIN along the path to state
if Terminal-Test(state) then return Utility (state)
$v \leftarrow+\infty$
for a, s in SUCCESSORS(state) do
$v \leftarrow \operatorname{Min}(v, \operatorname{Max}-\operatorname{Value}(s, \alpha, \beta))$
if $v \leq \alpha$ then return $v \quad$ Cutoff
$\beta \leftarrow \operatorname{Min}(\beta, v)$
return v

Should α and β be passed by value or reference? ie. Should a lower a affect an upper one?

Alpha-Beta Pruning Example

