More Learning

- Ensembles
- Bayes Rule
- Neural Nets
- K-means Clustering
- EM Clustering
- WEKA

Ensembles

• An ensemble is a set of classifiers whose combined results give the final decision.

Bagging

- Generate "bootstrap" replicates of training set by sampling with replacement
- Learn one model on each replicate
- Combine by uniform voting

Boosting

- Maintain vector of weights for examples
- Initialize with uniform weights
- Loop:
 - Apply learner to weighted examples (or sample)
 - Increase weights of misclassified examples
- Combine models by weighted voting

Idea of Boosting

ADABoost

• ADABoost boosts the accuracy of the original learning algorithm.

 If the original learning algorithm does slightly better than 50% accuracy, ADABoost with a large enough number of classifiers is guaranteed to classify the training data perfectly.

Sample Application: Insect Recognition

Using circular regions of interest selected by an interest operator, train a classifier to recognize the different classes of insects.

- <u>ADTree classifier only</u> (alternating decision tree)
- Correctly Classified Instances 268 70.1571 %
 Incorrectly Classified Instances 114 29.8429 %
 Mean absolute error 0.3855
 Relative absolute error 77.2229 %

Classified as ->	Hesperperla	Doroneuria
Real Hesperperlas	167	28
Real Doroneuria	51	136

AdaboostM1 with ADTree classifier

- **Correctly Classified Instances** 303 79
- **Incorrectly Classified Instances** ۲
- Mean absolute error •
- Relative absolute error

0.2277 45.6144 %

Classified as ->	Hesperperla	Doroneuria
Real	167	28
Hesperperlas		
Real	51	136
Doroneuria		

• <u>RepTree classifier only</u> (reduced error pruning)

- Correctly Classified Instances 294 75.3846 %
 Incorrectly Classified Instances 96 24.6154 %
 Mean absolute error 0.3012
- Mean absolute error
 Bolotive absolute error
- Relative absolute error

Classified as ->HesperperlaDoroneuriaReal16941Hesperperlas16911Real55125Doroneuria1111

60.606 %

AdaboostM1 with RepTree classifier

- Correctly Classified Instances 324 83.07
 Incorrectly Classified Instances 66 16.923
- Mean absolute error
- Relative absolute error

39.7848 %

0.1978

83.0769 % 16.9231 %

Classified as ->	Hesperperla	Doroneuria
Real Hesperperlas	180	30
Real	36	144
Doroneuria		

Bayesian Learning

 Bayes' Rule provides a way to calculate probability of a hypothesis based on

- its prior probability

the probability of observing the data, given that hypothesis

- the observed data (feature vector)

- h is the hypothesis (such as the class).
- X is the feature vector to be classified.
- P(X | h) is the prior probability that this feature vector occurs, given that h is true.
- P(h) is the prior probability of hypothesis h.
- P(X) = the prior probability of the feature vector X.
- These priors are usually calculated from frequencies in the training data set.

Example

 Suppose we want to know the probability of class 1 for feature vector [0,1,0].

• P(1 | [0,1,0]) = P([0,1,0] | 1) P(1) / P([0,1,0])= (0.25) (0.5) / (.125) = 1.0

Of course the training set would be much bigger and for real data could include multiple instances of a given feature vector.

MAP

- Suppose H is a set of candidate hypotheses.
- We would like to find the most probable h in H.
- h_{MAP} is a MAP (maxiumum a posteriori) hypothesis if

```
h_{MAP} = argmax P(h | X)
h \in H
```

 This just says to calculate P(h | X) by Bayes' rule for each possible class h and take the one that gets the highest score.

Cancer Test Example

P(cancer) = .008 P(not cancer) = .992 P(positive | cancer) = .98 P(positive | not cancer) = .03 P(negative | cancer) = .02 P(negative | not cancer) = .97

New patient's test comes back positive.

 $\begin{aligned} \mathsf{P}(\mathsf{cancer} \mid \mathsf{positive}) &= \mathsf{P}(\mathsf{positive} \mid \mathsf{cancer}) \; \mathsf{P}(\mathsf{cancer}) \\ &= (.98) \; (.008) = .0078 \\ \\ \mathsf{P}(\mathsf{not \ cancer} \mid \mathsf{positive} = \mathsf{P}(\mathsf{positive} \mid \mathsf{not \ cancer}) \; \mathsf{P}(\mathsf{not \ cancer}) \\ &= (.03) \; (.992) = .0298 \end{aligned}$

h_{MAP} would say it's not cancer. Depends strongly on priors!

Neural Net Learning

- Motivated by studies of the brain.
- A network of "artificial neurons" that learns a function.
- Doesn't have clear decision rules like decision trees, but highly successful in many different applications. (e.g. face detection)
- Our hierarchical classifier used neural net classifiers as its components.

Brains

 10^{11} neurons of $\,>20$ types, 10^{14} synapses, 1ms–10ms cycle time Signals are noisy "spike trains" of electrical potential

McCulloch–Pitts "unit"

Output is a "squashed" linear function of the inputs:

 $a_i \leftarrow g(in_i) = g\left(\Sigma_j W_{j,i} a_j
ight)$

A gross oversimplification of real neurons, but its purpose is to develop understanding of what networks of simple units can do

Activation functions

(a) is a step function or threshold function

(b) is a sigmoid function $1/(1+e^{-x})$

Changing the bias weight $W_{0,i}$ moves the threshold location

Feed-forward example

Feed-forward network = a parameterized family of nonlinear functions:

 $\begin{array}{l} a_5 \ = \ g(W_{3,5} \cdot a_3 + W_{4,5} \cdot a_4) \\ = \ g(W_{3,5} \cdot g(W_{1,3} \cdot a_1 + W_{2,3} \cdot a_2) + W_{4,5} \cdot g(W_{1,4} \cdot a_1 + W_{2,4} \cdot a_2)) \end{array}$

Adjusting weights changes the function: do learning this way!

Perceptron learning

Learn by adjusting weights to reduce error on training set

The squared error for an example with input ${f x}$ and true output y is

$$E = \frac{1}{2} Err^2 \equiv \frac{1}{2} (y - h_{\mathbf{W}}(\mathbf{x}))^2 ,$$

Perform optimization search by gradient descent:

$$\frac{\partial E}{\partial W_j} = Err \times \frac{\partial Err}{\partial W_j} = Err \times \frac{\partial}{\partial W_j} \left(y - g(\sum_{j=0}^n W_j x_j) \right)$$
$$= -Err \times g'(in) \times x_j$$

Simple weight update rule:

 $W_j \leftarrow W_j + \alpha \times Err \times g'(in) \times x_j$

E.g., +ve error \Rightarrow increase network output \Rightarrow increase weights on +ve inputs, decrease on -ve inputs

Perceptron learning contd.

Perceptron learning rule converges to a consistent function for any linearly separable data set

Perceptron learns majority function easily, DTL is hopeless

DTL learns restaurant function easily, perceptron cannot represent it

Multilayer perceptrons

Layers are usually fully connected; numbers of hidden units typically chosen by hand

Multilayer perceptrons with back-propagation learning are more powerful.

Back-propagation learning contd.

Learning curve for MLP with 4 hidden units:

MLPs are quite good for complex pattern recognition tasks, but resulting hypotheses cannot be understood easily

Decision tree still wins, but not by as much.

Handwritten digit recognition

3-nearest-neighbor = 2.4% error 400–300–10 unit MLP = 1.6% error LeNet: 768–192–30–10 unit MLP = 0.9% error

Current best (kernel machines, vision algorithms) $\approx 0.6\%$ error

Neural nets (MLP) work great on handwritten digit recognition.

Kernel Machines

- A relatively new learning methodology (1992) derived from statistical learning theory.
- Became famous when it gave accuracy comparable to neural nets in a handwriting recognition class.
- Was introduced to computer vision researchers by Tomaso Poggio at MIT who started using it for face detection and got better results than neural nets.
- Has become very popular and widely used with packages available.

Support Vector Machines (SVM)

- Support vector machines are learning algorithms that try to find a hyperplane that separates the different classes of data the most.
- They are a specific kind of kernel machines based on two key ideas:
 - maximum margin hyperplanes
 - a kernel 'trick'

Maximal Margin (2 class problem)

In 2D space, a hyperplane is a line.

In 3D space, it is a plane.

Find the hyperplane with maximal margin for all the points. This originates an optimization problem which has a unique solution.

Support Vectors

- The weights α_i associated with data points are zero, except for those points closest to the separator.
- The points with nonzero weights are called the support vectors (because they hold up the separating plane).
- Because there are many fewer support vectors than total data points, the number of parameters defining the optimal separator is small.

The Kernel Trick

The SVM algorithm implicitly maps the original data to a feature space of possibly infinite dimension in which data (which is not separable in the original space) becomes separable in the feature space.

Example from Text

True decision boundary is $x_1^2 + x_2^2 \le 1$.

- Mapping the data to the 3D space defined by $f_1 = x_1^2$, $f_2 = x_2^2$, $f_3 = 2^{1/2} x_1 x_2$ makes it linearly separable by a plane in 3D.
- For this problem F(x_i) F(x_j) is just (xi xj)^{2,} which is called a kernel function.

Kernel Functions

- The kernel function is designed by the developer of the SVM.
- It is applied to pairs of input data to evaluate dot products in some corresponding feature space.
- Kernels can be all sorts of functions including polynomials and exponentials.

Kernel Function used in our 3D Computer Vision Work

- $k(A,B) = exp(-\theta_{AB}^2/\sigma^2)$
- A and B are shape descriptors (big vectors).
- θ is the angle between these vectors.
- σ^2 is the "width" of the kernel.

Unsupervised Learning

- Find patterns in the data.
- Group the data into clusters.
- Many clustering algorithms.
 - K means clustering
 - EM clustering
 - Graph-Theoretic Clustering
 - Clustering by Graph Cuts
 - etc

Clustering by K-means Algorithm

Form K-means clusters from a set of *n*-dimensional feature vectors

- 1. Set *ic* (iteration count) to 1
- 2. Choose randomly a set of *K* means $m_1(1), ..., m_K(1)$.
- 3. For each vector $x_{i'}$ compute $D(x_i, m_k(ic)), k=1, ..., K$ and assign x_i to the cluster C_i with nearest mean.
- 4. Increment *ic* by 1, update the means to get $m_1(ic), \dots, m_K(ic)$.
- 5. Repeat steps 3 and 4 until $C_k(ic) = C_k(ic+1)$ for all k.

K-Means Classifier (shown on RGB color data)

original data one RGB per pixel

color clusters

$\text{K-Means} \rightarrow \text{EM}$

The clusters are usually Gaussian distributions.

Boot Step:

- Initialize K clusters: C_l , ..., C_K

 (μ_{j}, Σ_{j}) and $P(C_{j})$ for each cluster *j*.

• Iteration Step:

- Estimate the cluster of each datum

$$p(C_j \mid x_i)$$

Re-estimate the cluster parameters

 $(\mu_j, \Sigma_j), p(C_j)$ For each cluster j

The resultant set of clusters is called a **mixture model**; if the distributions are Gaussian, it's a Gaussian mixture.⁴⁰

Maximization

EM Algorithm Summary

- Boot Step:
 - Initialize K clusters: $C_1, ..., C_K$

 (μ_i, Σ_i) and $p(C_i)$ for each cluster *j*.

- Iteration Step: •
 - Expectation Step

$$p(C_j | x_i) = \frac{p(x_i | C_j) \cdot p(C_j)}{p(x_i)} = \frac{p(x_i | C_j) \cdot p(C_j)}{\sum_j p(x_i | C_j) \cdot p(C_j)}$$

Maximization Step

Viaximization Step

$$\mu_{j} = \frac{\sum_{i} p(C_{j} \mid x_{i}) \cdot x_{i}}{\sum_{i} p(C_{j} \mid x_{i})} \qquad \Sigma_{j} = \frac{\sum_{i} p(C_{j} \mid x_{i}) \cdot (x_{i} - \mu_{j}) \cdot (x_{i} - \mu_{j})^{T}}{\sum_{i} p(C_{j} \mid x_{i})} \qquad p(C_{j}) = \frac{\sum_{i} p(C_{j} \mid x_{i})}{N}$$

EM Clustering using color and texture information at each pixel (from Blobworld)

EM for Classification of Images in Terms of their Color Regions

Sample Results

Sample Results (Cont.)

Sample Results (Cont.)

46

WEKA

- WEKA is a set of data mining tools written in Java from the University of Waikato in New Zealand and is named after a flightless bird.
- WEKA is open source software provided under GNU.
- We use it heavily in our research to test out different classifiers. We may later replace a WEKA classifier with a more efficient C++ version.

Open training set file.

Weka Explorer	
Preprocess Classify Cluster Associate Select attributes Visualize	
Open file Open URL Open DB Gene	rate Undo Edit Save
Choose None Apply	
Current relation Relation: train_hes Instances: 360 Attributes: 81	Selected attribute Type: Numeric Name: part1 Type: Numeric Missing: 0 (0%) Distinct: 6 Unique: 2 (1%)
Attributes	Statistic Value
All None Invert Pattern	Minimum 0
	Maximum 5
No. Name	Mean 0.375
	StdDev 0.673
1 part1	
2 part2	
parts	
4 part4 5 part5	
6 part6	Class: label (Nom) Visualize All
7 part7	
8 part8	252
9 part9	
10 part10	
11 part11	
12 part12	
13 part13	89
Remove	
	0 2.5
Status OK	

1. Choose classify

Lots of Available Classifiers

Some that we have used.

- Bayes Classifiers
 - Naive Bayes
 - Bayes Nets
- Functions
 - Multilayered Perception
 - SMO (an SVM)
- Metaclassifiers
 - Bagging
 - Adaboost
- Trees
 - REP-tree
 - Random Forest

What Applications Use Machine Learning?

- Computer Vision
- Speech and Natural Language Processing
- Medical Diagnosis
- Predicting Waiting Times in Emergency Rooms
- Financial Planning
- Credit Card Fraud
- Identify Spam