
More Learning 

• Ensembles 
• Bayes Rule 
• Neural Nets 
• K-means Clustering 
• EM Clustering 
• WEKA 
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Ensembles 
 

• An ensemble is a set of classifiers whose 
combined results give the final decision. 

test feature vector 

classifier 1 classifier 2 classifier 3 

super classifier 

result 
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Idea of Boosting 
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ADABoost 

• ADABoost boosts the accuracy of the 
original learning algorithm. 
 

• If the original learning algorithm does 
slightly better than 50% accuracy, 
ADABoost with a large enough number of 
classifiers is guaranteed to classify the 
training data perfectly. 
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Sample Application:  Insect Recognition 

Using circular regions of interest selected by an interest operator, 
train a classifier to recognize the different classes of insects. 

Doroneuria (Dor) 
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Boosting Comparison 
• ADTree classifier only  (alternating decision tree) 

 
• Correctly Classified Instances         268                70.1571 % 
• Incorrectly Classified Instances        114               29.8429 % 
• Mean absolute error                       0.3855 
• Relative absolute error                 77.2229 % 
 

Classified as -> Hesperperla Doroneuria 

Real 
Hesperperlas 

167 28 

Real 
Doroneuria 

51 136 
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Boosting Comparison 
AdaboostM1 with ADTree classifier 

 
• Correctly Classified Instances         303              79.3194 % 
• Incorrectly Classified Instances        79               20.6806 % 
• Mean absolute error                      0.2277 
• Relative absolute error                 45.6144 % 
 

Classified as -> Hesperperla Doroneuria 

Real 
Hesperperlas 

167 28 

Real 
Doroneuria 

51 136 
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Boosting Comparison 
• RepTree classifier only (reduced error pruning) 

 
• Correctly Classified Instances         294              75.3846 % 
• Incorrectly Classified Instances        96               24.6154 % 
• Mean absolute error                       0.3012 
• Relative absolute error                 60.606  % 
 

Classified as -> Hesperperla Doroneuria 

Real 
Hesperperlas 

169 41 

Real 
Doroneuria 

55 125 
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Boosting Comparison 
AdaboostM1 with RepTree classifier 

 
• Correctly Classified Instances         324               83.0769 % 
• Incorrectly Classified Instances        66               16.9231 % 
• Mean absolute error                      0.1978 
• Relative absolute error                 39.7848 % 

Classified as -> Hesperperla Doroneuria 

Real 
Hesperperlas 

180 30 

Real 
Doroneuria 

36 144 
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Bayesian Learning 

• Bayes’ Rule provides a way to calculate 
probability of a hypothesis based on 
 
– its prior probability 

 
– the probability of observing the data, given 

that hypothesis 
 

– the observed data (feature vector) 
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Bayes’ Rule 
 
 
 
 
• h is the hypothesis (such as the class). 
• X is the feature vector to be classified. 
• P(X | h) is the prior probability that this feature vector 

occurs, given that h is true. 
• P(h) is the prior probability of hypothesis h. 
• P(X) = the prior probability of the feature vector X. 
• These priors are usually calculated from frequencies in 

the training data set. 

                            P(X | h)  P(h) 
P(h | X)     =         ----------------- 
                                   P(X) Often assumed 

constant and 
left out. 
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Example 
• Suppose we want to know the 
    probabilty of class 1 for feature 
    vector [0,1,0]. 
 
• P(1 | [0,1,0]) = P([0,1,0] | 1) P(1) / P([0,1,0]) 
                         =        (0.25)  (0.5)  /  (.125) 
                         =         1.0 

x1 x2 x3   y 
 0   0   0   1 
 0   0   1   0 
 0   1   0   1 
 0   1   1   1 
 1   0   0   0 
 1   0   1   1 
 1   1   0   0 
 1   1   1   0 

Of course the training set would be much bigger and 
for real data could include multiple instances of a  
given feature vector. 
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MAP  
• Suppose H is a set of candidate hypotheses. 

 
• We would like to find the most probable h in H. 

 
• hMAP is a MAP (maxiumum a posteriori) hypothesis if 

 
    hMAP =  argmax  P(h | X) 
                     h ε H 
 
• This just says to calculate P(h | X) by Bayes’ rule for each possible 

class h and take the one that gets the highest score. 
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Cancer Test Example 
P(cancer) = .008                  
P(not cancer) = .992 
P(positive | cancer) = .98 
P(positive | not cancer) = .03 
P(negative | cancer) = .02 
P(negative | not cancer) =.97 

New patient’s test comes back positive. 
 
P(cancer | positive) = P(positive | cancer) P(cancer) 
                                = (.98) (.008) = .0078 
P(not cancer | positive = P(positive | not cancer) P(not cancer) 
                                = (.03) (.992) = .0298 
hMAP would say it’s not cancer. Depends strongly on priors! 

Priors 
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Neural Net Learning 
• Motivated by studies of the brain. 

 
• A network of “artificial neurons” that learns a 

function. 
 

• Doesn’t have clear decision rules like decision 
trees, but highly successful in many different 
applications. (e.g. face detection) 
 

• Our hierarchical classifier used neural net 
classifiers as its components. 













Majority                             Restaurant 



Multilayer perceptrons with back-propagation learning 
are more powerful. 



Restaurant 

Decision tree still wins, but not by as much. 



Neural nets (MLP) work great on handwritten digit recognition. 
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Kernel Machines  
• A relatively new learning methodology (1992) derived 

from statistical learning theory. 
 

• Became famous when it gave accuracy comparable to 
neural nets in a handwriting recognition class. 
 

• Was introduced to computer vision researchers by 
Tomaso Poggio at MIT who started using it for face 
detection and got better results than neural nets. 
 

• Has become very popular and widely used with 
packages available. 
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Support Vector Machines (SVM) 
• Support vector machines are learning algorithms  
      that try to find a hyperplane that separates  
       the different classes of data the most. 
 
• They are a specific kind of kernel machines based on  
 two key ideas: 
 

• maximum margin hyperplanes  
 

• a kernel ‘trick’ 
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Maximal Margin (2 class problem) 

Find the hyperplane with maximal margin for all 
the points. This originates an optimization problem 
which has a unique solution. 

hyperplane 

margin 

In 2D space, 
a hyperplane is 
a line. 
 
In 3D space, 
it is a plane. 
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Support Vectors 
• The weights αi associated with data points are 

zero, except for those points closest to the 
separator. 
 

• The points with nonzero weights are called the 
support vectors (because they hold up the 
separating plane). 
 

• Because there are many fewer support vectors 
than total data points, the number of parameters 
defining the optimal separator is small. 
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The Kernel Trick 

The SVM algorithm implicitly maps the original 
data to a feature space of possibly infinite dimension 
in which data (which is not separable in the 
original  space) becomes separable in the feature space. 

0 0 

0 0 
0 1 

1 1 

Original space Rk 

0 
0 

0 0 
0 

1 
1 

1 

Feature space Rn 

1 

1 Kernel 
trick 
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Example from Text 

True decision boundary 
is  x1

2 + x2
2 < 1 . 

• Mapping the data to the 3D space defined by 
   f1 = x1

2,        f2 = x2
2,       f3 = 21/2 x1 x2 

   makes it linearly separable by a plane in 3D. 
 
•  For this problem F(xi) • F(xj)  is just (xi • xj)2, 

    which is called a kernel function. 



35 

Kernel Functions 

• The kernel function is designed by the 
developer of the SVM. 
 

• It is applied to pairs of input data to 
evaluate dot products in some 
corresponding feature space. 
 

• Kernels can be all sorts of functions 
including polynomials and exponentials. 
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Kernel Function used in our 3D 
Computer Vision Work 

• k(A,B) = exp(-θ2
AB/σ2) 

 
• A and B are shape descriptors 

(big vectors). 
 

• θ is the angle between these 
vectors.  
 

• σ2 is the “width” of the kernel. 
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Unsupervised Learning 

• Find patterns in the data. 
• Group the data into clusters. 
• Many clustering algorithms. 

– K means clustering 
– EM clustering 
– Graph-Theoretic Clustering 
– Clustering by Graph Cuts 
– etc 
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Clustering by K-means Algorithm 
Form K-means clusters from a set of n-dimensional feature vectors 
 
1. Set ic (iteration count) to 1 
 
2. Choose randomly a set of K means m1(1), …, mK(1). 
 
3. For each vector xi, compute D(xi,mk(ic)), k=1,…K 
    and assign xi to the cluster Cj with nearest mean. 
 
4.  Increment ic by 1, update the means to get m1(ic),…,mK(ic). 
 
5. Repeat steps 3 and 4 until Ck(ic) = Ck(ic+1) for all k. 
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K-Means Classifier 
(shown on RGB color data) 

original data 
one RGB per pixel 

color clusters 
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K-Means → EM 
The clusters are usually Gaussian distributions. 

• Boot Step: 
– Initialize K clusters: C1, …, CK 
  

• Iteration Step: 
– Estimate the cluster of each datum 

 
– Re-estimate the cluster parameters 

 
 

(µj, Σj) and P(Cj) for each cluster j.   

)|( ij xCp

)(),,( jjj CpΣµ For each cluster j 

Expectation 

Maximization 

The resultant set of clusters is called a mixture model; 
if the distributions are Gaussian, it’s a Gaussian mixture. 
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EM Algorithm Summary 

• Boot Step: 
– Initialize K clusters: C1, …, CK 
  

• Iteration Step: 
– Expectation Step 

 
 

– Maximization Step 

 
 

(µj, Σj) and p(Cj) for each cluster j.   
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EM Clustering using color and 
texture information at each pixel 

(from Blobworld) 
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Final Model for “trees” 

Final Model for “sky” 

EM 

EM for Classification of Images in 
Terms of their Color Regions 

Initial Model for “trees” 

Initial Model for “sky” 
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cheetah 

Sample Results 
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Sample Results (Cont.) 

grass 
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Sample Results (Cont.) 

lion 



WEKA 
• WEKA is a set of data mining tools written 

in Java from the University of Waikato in 
New Zealand and is named after a 
flightless bird. 

• WEKA is open source software provided 
under GNU. 

• We use it heavily in our research to test 
out different classifiers. We may later 
replace a WEKA classifier with a more 
efficient C++ version. 

47 
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Open training set file. 
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1. Choose classify 

2. Choose 
Supplied 
Test Set 

3. Choose a classifier (here MLP) 

4. Click 
Start 
and  
wait. 



Lots of Available Classifiers 
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• Bayes Classifiers 
• Naive Bayes 
• Bayes Nets 

• Functions 
• Multilayered Perception 
• SMO (an SVM) 

• Metaclassifiers 
• Bagging 
• Adaboost 

• Trees 
• REP-tree 
• Random Forest 

Some that we have used. 



What Applications Use Machine 
Learning? 

• Computer Vision 
• Speech and Natural Language Processing 
• Medical Diagnosis 
• Predicting Waiting Times in Emergency 

Rooms 
• Financial Planning 
• Credit Card Fraud 
• Identify Spam 
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