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Beyond Classical Search 
 
• Chapter 3 covered problems that considered the whole 

search space and produced a sequence of actions 
leading to a goal. 
 

• Chapter 4 covers techniques (some developed outside 
of AI) that don’t try to cover the whole space and only the 
goal state, not the steps, are important.  
 

• The techniques of Chapter 4 tend to use much less 
memory and are not guaranteed to find an optimal 
solution. 



More Search Methods 

• Local Search 
– Hill Climbing 
– Simulated Annealing 
– Beam Search 
– Genetic Search 

• Local Search in Continuous Spaces 
• Searching with Nondeterministic Actions 
• Online Search (agent is executing actions) 
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Local Search Algorithms and 
Optimization Problems 

• Complete state formulation 
– For example, for the 8 queens problem, all 8 queens 

are on the board and need to be moved around to get 
to a goal state 

• Equivalent to optimization problems often found 
in science and engineering 

• Start somewhere and try to get to the solution 
from there 

• Local search around the current state to decide 
where to go next 



Pose Estimation Example 

• Given a geometric model of a 3D object 
and a 2D image of the object. 

• Determine the position and orientation of 
the object wrt the camera that snapped the 
image. 
 
 

     image                 3D object 

• State (x, y, z, θx, θy, θz) 4 
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Hill Climbing “Gradient ascent” 

solution 

Note: solutions shown 
here as max not min. 

Often used for numerical optimization problems. 
 
How does it work? 
 
In continuous space, the gradient tells you the 
direction in which to move uphill. 
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AI Hill Climbing 

Steepest-Ascent Hill Climbing 
• current  start node 
•  loop do 

– neighbor  a highest-valued successor of current 
– if neighbor.Value <= current.Value then return current.State 
– current  neighbor 

• end loop 

At each step, the current node is replaced by 
the best (highest-valued) neighbor. 
 
This is sometimes called greedy local search. 
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Hill Climbing Search 
 6 

4 10 3 2 8 

current 

What if current had a value of 12? 
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Hill Climbing Problems 
Local maxima 

 
 
 

Plateaus 
 
 
 
 
Diagonal ridges  

What is it sensitive to? 
Does it have any advantages? 
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Solving the Problems  
• Allow backtracking (What happens to complexity?) 

 
• Stochastic hill climbing: choose at random from uphill 

moves, using steepness for a probability 
 

• Random restarts: “If at first you don’t succeed, try, try 
again.” 
 

• Several moves in each of several directions, then test 
 

• Jump to a different part of the search space 
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Simulated Annealing 

• Variant of hill climbing (so up is good) 
 

• Tries to explore enough of the search 
space early on, so that the final solution is 
less sensitive to the start state 
 

• May make some downhill moves before 
finding a good way to move uphill. 
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Simulated Annealing 

• Comes from the physical process of annealing in which substances 
are raised to high energy levels (melted) and then cooled to solid 
state. 
 
 
 
 
 
 
 
 

• The probability of moving to a higher energy state, instead of lower is   
 p = e^(-∆E/kT)  

 where ∆E is the positive change in energy level, T is the temperature, 
and k is Bolzmann’s constant. 

heat                                 cool 
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Simulated Annealing 

• At the beginning, the temperature is high. 
• As the temperature becomes lower 

–   kT becomes lower 
–   ∆E/kT gets bigger 
–   (-∆E/kT) gets smaller 
–   e^(-∆E/kT) gets smaller 

• As the process continues, the probability 
of a downhill move gets smaller and 
smaller. 
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For Simulated Annealing 

• ∆E represents the change in the value of 
the objective function. 
 

• Since the physical relationships no longer 
apply, drop k.   So p = e^(-∆E/T)  
 

• We need an annealing schedule, which is 
a sequence of values of T: T0, T1, T2, ... 



14 

Simulated Annealing Algorithm 
• current  start node;  

 
• for each T on the schedule  /* need a schedule */ 

 
– next  randomly selected successor of current 
– evaluate next; it it’s a goal, return it 

– ∆E  next.Value – current.Value   /* already negated */ 
– if ∆E > 0 

• then current  next            /* better than current */ 
• else current  next with probability e^(∆E/T) 

 

How would you do this probabilistic selection? 



Probabilistic Selection 

• Select next with probability p 
 
 
 
 

• Generate a random number  
• If it’s <= p, select next 
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0                                        1 p random  
number 
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Simulated Annealing Properties 
• At a fixed “temperature” T, state occupation probability 

reaches the Boltzman distribution 
 
 

• If T is decreased slowly enough (very slowly), the 
procedure will reach the best state. 
 

• Slowly enough has proven too slow for some 
researchers who have developed alternate schedules. 

p(x) = αe^(E(x)/kT) 
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Simulated Annealing Schedules 

• Acceptance criterion and cooling schedule 



18 

Simulated Annealing Applications 
• Basic Problems 

– Traveling salesman 
– Graph partitioning 
– Matching problems 
– Graph coloring 
– Scheduling 

• Engineering 
– VLSI design 

• Placement 
• Routing 
• Array logic minimization 
• Layout 

– Facilities layout 
– Image processing 
– Code design in information theory 
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Local Beam Search 

• Keeps more previous states in memory 
– Simulated annealing just kept one previous state in 

memory. 
– This search keeps k states in memory. 
 

-  randomly generate k initial states 
-  if any state is a goal, terminate 
-  else, generate all successors and select best k 
-  repeat 



Local Beam Search 
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174611094281 174629844710 

Genetic Algorithms  
• Start with random population of states 

– Representation serialized (ie. strings of characters or bits) 
– States are ranked with “fitness function” 

• Produce new generation  
– Select random pair(s) using probability:  

• probability ~ fitness 
– Randomly choose “crossover point” 

• Offspring mix halves 
– Randomly mutate bits 

 

776511094281 776529844710 

164611094281 

776029844210 

Crossover           Mutation 

  



Genetic Algorithm 
• Given: population P and fitness-function f 
• repeat 

– newP  empty set 
– for i = 1 to size(P) 

x  RandomSelection(P,f) 
y  RandomSelection(P,f) 
child  Reproduce(x,y) 
if (small random probability) then child  Mutate(child) 
add child to newP 

– P  newP 
• until some individual is fit enough or enough time has elapsed 
• return the best individual in P according to f 
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Using Genetic Algorithms 
• 2 important aspects to using them 

– 1. How to encode your real-life problem 
– 2. Choice of fitness function 

• Research Example 
– I have N variables V1, V2, ... VN 
– I want to produce a single number from them 

that best satisfies my fitness function F 
– I tried linear combinations, but that didn’t work 
– A guy named Stan I met at a workshop in Italy 

told me to try Genetic Programming 
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Genetic Programming 

• Like genetic algorithm, but instead of 
finding the best character string, we want 
to find the best arithmetic expression tree  

• The leaves will be the variables and the 
non-terminals will be arithmetic operators 

• It uses the same ideas of crossover and 
mutation to produce the arithmetic 
expression tree that maximizes the fitness 
function. 
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Tree structure for quantifying 
midface hypoplasia 

Xi are the selected histogram bins from an azimuth- 
elevation histogram of the surface normals of the face. 



Local Search in Continuous Spaces 

• Given a continuous state space 
 S = {(x1,x2,…,xN) | xi ε R} 
• Given a continuous objective function 

f(x1,x2,…,xN)  
• The gradient of the objective function is a 

vector ∇f = (∂f/∂x1,∂f/∂x2,…,∂f/∂xN) 
• The gradient gives the magnitude and 

direction of the steepest slope at a point. 
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Local Search in Continuous Spaces 

• To find a maximum, the basic idea is to set 
∇f =0 

• Then updating of the current state becomes 
 x  x + α∇f(x) 
 where α is a small constant. 
• Theory behind this is taught in numerical 

methods classes. 
• Your book suggests the Newton-Raphson 

method. Luckily there are packages….. 
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Computer Vision Pose Estimation Example 
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pose from 
6 point 
correspondences 
 
pose from ellipse- 
circle  
correspondence 
 
 
 
 
 
pose from both 
6 points and 
ellipse-circle 
correspondences 

I have a 
3D model 
of an object 
and an image 
of that object. 
 
I want to find 
the pose: the 
position and 
orientation 
of the camera. 



Computer Vision Pose Estimation Example 

29 

Initial pose from points/ellipses and 
final pose after optimization. 
 

• The optimization was searching a 6D space: 
     (x,y,z,θx,θy,θz) 
• The fitness function was how well the projection 
     of the 3D object lined up with the edges on  
     the image. 



Searching with Nondeterministic Actions 

• Vacuum World (actions = {left, right, suck}) 
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Searching with Nondeterministic Actions 

In the nondeterministic case, the result of an 
action can vary. 

 
Erratic Vacuum World:  

• When sucking a dirty square, it cleans it and 
sometimes cleans up dirt in an adjacent square. 
 

• When sucking a clean square, it sometimes 
deposits dirt on the carpet. 
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Generalization of State-Space 
Model 

1. Generalize the transition function to 
return a set of possible outcomes. 

oldf: S x A -> S     newf: S x A -> 2S 

2. Generalize the solution to a contingency 
plan.  

if state=s then action-set-1 else action-set-2 
3. Generalize the search tree to an AND-OR 

tree. 
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AND-OR Search Tree 
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AND 
Node 

OR 
Node agent chooses 

must check 
both 

same 
as an 
ancestor 



Searching with Partial Observations 

• The agent does not always know its state! 
 

• Instead, it maintains a belief state: a set of 
possible states it might be in.  
 

• Example: a robot can be used to build a 
map of a hostile environment. It will have 
sensors that allow it to “see” the world. 

34 



Belief State Space for Sensorless Agent  
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 initial      state 

Knows it’s  
on the right. 

 
 

Knows it’s 
on the left 

Knows left 
side clean 

? 
Knows its 
side is clean. 



Online Search Problems 

• Active agent 
–  executes actions 
–  acquires percepts from sensors 
–  deterministic and fully observable 
–  has to perform an action to know the 

outcome 
• Examples 

– Web search 
– Autonomous vehicle 
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