
1

Beyond Classical Search

• Chapter 3 covered problems that considered the whole

search space and produced a sequence of actions
leading to a goal.

• Chapter 4 covers techniques (some developed outside
of AI) that don’t try to cover the whole space and only the
goal state, not the steps, are important.

• The techniques of Chapter 4 tend to use much less
memory and are not guaranteed to find an optimal
solution.

More Search Methods

• Local Search
– Hill Climbing
– Simulated Annealing
– Beam Search
– Genetic Search

• Local Search in Continuous Spaces
• Searching with Nondeterministic Actions
• Online Search (agent is executing actions)

2

3

Local Search Algorithms and
Optimization Problems

• Complete state formulation
– For example, for the 8 queens problem, all 8 queens

are on the board and need to be moved around to get
to a goal state

• Equivalent to optimization problems often found
in science and engineering

• Start somewhere and try to get to the solution
from there

• Local search around the current state to decide
where to go next

Pose Estimation Example

• Given a geometric model of a 3D object
and a 2D image of the object.

• Determine the position and orientation of
the object wrt the camera that snapped the
image.

 image 3D object

• State (x, y, z, θx, θy, θz) 4

5

Hill Climbing “Gradient ascent”

solution

Note: solutions shown
here as max not min.

Often used for numerical optimization problems.

How does it work?

In continuous space, the gradient tells you the
direction in which to move uphill.

6

AI Hill Climbing

Steepest-Ascent Hill Climbing
• current  start node
• loop do

– neighbor  a highest-valued successor of current
– if neighbor.Value <= current.Value then return current.State
– current  neighbor

• end loop

At each step, the current node is replaced by
the best (highest-valued) neighbor.

This is sometimes called greedy local search.

7

Hill Climbing Search
 6

4 10 3 2 8

current

What if current had a value of 12?

8

Hill Climbing Problems
Local maxima

Plateaus

Diagonal ridges

What is it sensitive to?
Does it have any advantages?

9

Solving the Problems
• Allow backtracking (What happens to complexity?)

• Stochastic hill climbing: choose at random from uphill

moves, using steepness for a probability

• Random restarts: “If at first you don’t succeed, try, try
again.”

• Several moves in each of several directions, then test

• Jump to a different part of the search space

10

Simulated Annealing

• Variant of hill climbing (so up is good)

• Tries to explore enough of the search
space early on, so that the final solution is
less sensitive to the start state

• May make some downhill moves before
finding a good way to move uphill.

11

Simulated Annealing

• Comes from the physical process of annealing in which substances
are raised to high energy levels (melted) and then cooled to solid
state.

• The probability of moving to a higher energy state, instead of lower is
 p = e^(-∆E/kT)

 where ∆E is the positive change in energy level, T is the temperature,
and k is Bolzmann’s constant.

heat cool

12

Simulated Annealing

• At the beginning, the temperature is high.
• As the temperature becomes lower

– kT becomes lower
– ∆E/kT gets bigger
– (-∆E/kT) gets smaller
– e^(-∆E/kT) gets smaller

• As the process continues, the probability
of a downhill move gets smaller and
smaller.

13

For Simulated Annealing

• ∆E represents the change in the value of
the objective function.

• Since the physical relationships no longer
apply, drop k. So p = e^(-∆E/T)

• We need an annealing schedule, which is
a sequence of values of T: T0, T1, T2, ...

14

Simulated Annealing Algorithm
• current  start node;

• for each T on the schedule /* need a schedule */

– next  randomly selected successor of current
– evaluate next; it it’s a goal, return it

– ∆E  next.Value – current.Value /* already negated */
– if ∆E > 0

• then current  next /* better than current */
• else current  next with probability e^(∆E/T)

How would you do this probabilistic selection?

Probabilistic Selection

• Select next with probability p

• Generate a random number
• If it’s <= p, select next

15

0 1 p random
number

16

Simulated Annealing Properties
• At a fixed “temperature” T, state occupation probability

reaches the Boltzman distribution

• If T is decreased slowly enough (very slowly), the
procedure will reach the best state.

• Slowly enough has proven too slow for some
researchers who have developed alternate schedules.

p(x) = αe^(E(x)/kT)

17

Simulated Annealing Schedules

• Acceptance criterion and cooling schedule

18

Simulated Annealing Applications
• Basic Problems

– Traveling salesman
– Graph partitioning
– Matching problems
– Graph coloring
– Scheduling

• Engineering
– VLSI design

• Placement
• Routing
• Array logic minimization
• Layout

– Facilities layout
– Image processing
– Code design in information theory

19

Local Beam Search

• Keeps more previous states in memory
– Simulated annealing just kept one previous state in

memory.
– This search keeps k states in memory.

- randomly generate k initial states
- if any state is a goal, terminate
- else, generate all successors and select best k
- repeat

Local Beam Search

20

21

174611094281 174629844710

Genetic Algorithms
• Start with random population of states

– Representation serialized (ie. strings of characters or bits)
– States are ranked with “fitness function”

• Produce new generation
– Select random pair(s) using probability:

• probability ~ fitness
– Randomly choose “crossover point”

• Offspring mix halves
– Randomly mutate bits

776511094281 776529844710

164611094281

776029844210

Crossover Mutation

 

Genetic Algorithm
• Given: population P and fitness-function f
• repeat

– newP  empty set
– for i = 1 to size(P)

x  RandomSelection(P,f)
y  RandomSelection(P,f)
child  Reproduce(x,y)
if (small random probability) then child  Mutate(child)
add child to newP

– P  newP
• until some individual is fit enough or enough time has elapsed
• return the best individual in P according to f

22

Using Genetic Algorithms
• 2 important aspects to using them

– 1. How to encode your real-life problem
– 2. Choice of fitness function

• Research Example
– I have N variables V1, V2, ... VN
– I want to produce a single number from them

that best satisfies my fitness function F
– I tried linear combinations, but that didn’t work
– A guy named Stan I met at a workshop in Italy

told me to try Genetic Programming
23

Genetic Programming

• Like genetic algorithm, but instead of
finding the best character string, we want
to find the best arithmetic expression tree

• The leaves will be the variables and the
non-terminals will be arithmetic operators

• It uses the same ideas of crossover and
mutation to produce the arithmetic
expression tree that maximizes the fitness
function.

24

25

Tree structure for quantifying
midface hypoplasia

Xi are the selected histogram bins from an azimuth-
elevation histogram of the surface normals of the face.

Local Search in Continuous Spaces

• Given a continuous state space
 S = {(x1,x2,…,xN) | xi ε R}
• Given a continuous objective function

f(x1,x2,…,xN)
• The gradient of the objective function is a

vector ∇f = (∂f/∂x1,∂f/∂x2,…,∂f/∂xN)
• The gradient gives the magnitude and

direction of the steepest slope at a point.
26

Local Search in Continuous Spaces

• To find a maximum, the basic idea is to set
∇f =0

• Then updating of the current state becomes
 x  x + α∇f(x)
 where α is a small constant.
• Theory behind this is taught in numerical

methods classes.
• Your book suggests the Newton-Raphson

method. Luckily there are packages…..
27

Computer Vision Pose Estimation Example

28

pose from
6 point
correspondences

pose from ellipse-
circle
correspondence

pose from both
6 points and
ellipse-circle
correspondences

I have a
3D model
of an object
and an image
of that object.

I want to find
the pose: the
position and
orientation
of the camera.

Computer Vision Pose Estimation Example

29

Initial pose from points/ellipses and
final pose after optimization.

• The optimization was searching a 6D space:
 (x,y,z,θx,θy,θz)
• The fitness function was how well the projection
 of the 3D object lined up with the edges on
 the image.

Searching with Nondeterministic Actions

• Vacuum World (actions = {left, right, suck})

30

Searching with Nondeterministic Actions

In the nondeterministic case, the result of an
action can vary.

Erratic Vacuum World:

• When sucking a dirty square, it cleans it and
sometimes cleans up dirt in an adjacent square.

• When sucking a clean square, it sometimes
deposits dirt on the carpet.

31

Generalization of State-Space
Model

1. Generalize the transition function to
return a set of possible outcomes.

oldf: S x A -> S newf: S x A -> 2S

2. Generalize the solution to a contingency
plan.

if state=s then action-set-1 else action-set-2
3. Generalize the search tree to an AND-OR

tree.

32

AND-OR Search Tree

33

AND
Node

OR
Node agent chooses

must check
both

same
as an
ancestor

Searching with Partial Observations

• The agent does not always know its state!

• Instead, it maintains a belief state: a set of
possible states it might be in.

• Example: a robot can be used to build a
map of a hostile environment. It will have
sensors that allow it to “see” the world.

34

Belief State Space for Sensorless Agent

35

 initial state

Knows it’s
on the right.

Knows it’s
on the left

Knows left
side clean

?
Knows its
side is clean.

Online Search Problems

• Active agent
– executes actions
– acquires percepts from sensors
– deterministic and fully observable
– has to perform an action to know the

outcome
• Examples

– Web search
– Autonomous vehicle

36

	Beyond Classical Search
	More Search Methods
	Local Search Algorithms and Optimization Problems
	Pose Estimation Example
	Hill Climbing
	AI Hill Climbing
	Hill Climbing Search
	Hill Climbing Problems
	Solving the Problems
	Simulated Annealing
	Simulated Annealing
	Simulated Annealing
	For Simulated Annealing
	Simulated Annealing Algorithm
	Probabilistic Selection
	Simulated Annealing Properties
	Simulated Annealing Schedules
	Simulated Annealing Applications
	Local Beam Search
	Local Beam Search
	Genetic Algorithms
	Genetic Algorithm
	Using Genetic Algorithms
	Genetic Programming
	Tree structure for quantifying midface hypoplasia
	Local Search in Continuous Spaces
	Local Search in Continuous Spaces
	Computer Vision Pose Estimation Example
	Computer Vision Pose Estimation Example
	Searching with Nondeterministic Actions
	Searching with Nondeterministic Actions
	Generalization of State-Space Model
	AND-OR Search Tree
	Searching with Partial Observations
	Belief State Space for Sensorless Agent
	Online Search Problems

