Complexity of A*

- Complexity is exponential unless
 \[|h(n) - h^*(n)| < O(\log h^*(n)) \]
 where \(h^*(n) \) is the true cost of going from \(n \) to goal.

- But, this is AI, computers are fast, and a good heuristic helps a lot.
Performance of Heuristics

• How do we evaluate a heuristic function?

• effective branching factor
 – If A* using h finds a solution at depth d using N nodes, then the effective branching factor is

\[
b | N \geq 1 + b + b^2 + b^3 + \ldots + b^d
\]

• Example
Table of Effective Branching Factors

<table>
<thead>
<tr>
<th>b</th>
<th>d</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>63</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>364</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>88573</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>43</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>9331</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>72,559,411</td>
</tr>
</tbody>
</table>

How might we use this idea to evaluate a heuristic?
Why not always use A*?

- Pros

- Cons
Iterative-Deepening A*

- Like iterative-deepening depth-first, but...
- Depth bound modified to be an **f-limit**
 - Start with limit = h(start)
 - Prune any node if f(node) > f-limit
 - Next f-limit=min-cost of any node pruned

How would this work?
Depth-First Branch & Bound

• Single DF search
 – → uses linear space
• Keep track of best solution so far
• If \(f(n) = g(n) + h(n) \geq \text{cost(best-soln)} \)
 – Then prune \(n \)

• Requires
 – Finite search tree, or
 – Good upper bound on solution cost

Adapted from Richard Korf presentation
(Global) Beam Search

• Idea
 – Best first but only keep N best items on priority queue

• Evaluation
 – Complete?
 – Time Complexity?
 – Space Complexity?
Local Search Algorithms and Optimization Problems

• **Complete state** formulation
 – For example, for the 8 queens problem, all 8 queens are on the board and need to be moved around to get to a goal state

• Equivalent to **optimization problems** often found in science and engineering

• Start somewhere and try to get to the solution from there

• **Local search** around the current state to decide where to go next
Hill Climbing “Gradient ascent”

Basic Hill Climbing
- current <- start state; if it’s a goal return it.
- loop
 - select next operator and apply to current to get next
 - if next is a goal state, return it and quit
 - if not, but next is better than current, current <- next
 - end loop

No queue!
Hill Climbing

Steepest-Ascent Hill Climbing

• current <- start state; if it’s a goal return it.
• loop
 – initialize best_successor
 – for each operator
 – apply operator to current to get next
 • if next is a goal, return it and quit
 • if next is better than best_successor, best_successor <- next
 – if best-successor is better than current, current <- best_successor
• end loop
Robot Assembly Task

Initial State
• on(R,Table)
• on(B,Table)

Goal State
• on(R,B)
• on(B,G)
• on(G,Table)

Moves?
Cost Function?
Heuristic Function?
Let $h(s)$ be the number of unsatisfied goal relations.

Goal State
- on(R,B)
- on(B,G)
- on(G,Table)

Hill Climbing Search

- on(R,Table)
- on(B,Table)

$h=3$

- puton(G,table)
- puton(R,B)
- puton(B,R)
- takeoff(R,table)
- takeoff(B,table)
Hill Climbing Problems

- Local maxima
- Plateaus
- Diagonal ridges

Does it have any advantages?
Solving the Problems

- Allow backtracking (What happens to complexity?)

- Stochastic hill climbing: choose at random from uphill moves, using steepness for a probability

- Random restarts: “If at first you don’t succeed, try, try again.”

- Several moves in each of several directions, then test

- Jump to a different part of the search space
Simulated Annealing

- Variant of hill climbing (so up is good)

- Tries to explore enough of the search space early on, so that the final solution is less sensitive to the start state

- May make some downhill moves before finding a good way to move uphill.
Simulated Annealing

• Comes from the physical process of annealing in which substances are raised to high energy levels (melted) and then cooled to solid state.

 heat cool

 ↓

• The probability of moving to a higher energy state, instead of lower is $p = e^{(-\Delta E/kT)}$ where ΔE is the positive change in energy level, T is the temperature, and k is Boltzmann’s constant.
Simulated Annealing

• At the beginning, the temperature is high.
• As the temperature becomes lower
 – kT becomes lower
 – $\Delta E/kT$ gets bigger
 – $(-\Delta E/kT)$ gets smaller
 – $e^{(-\Delta E/kT)}$ gets smaller
• As the process continues, the probability of a downhill move gets smaller and smaller.
For Simulated Annealing

- ΔE represents the change in the value of the objective function.

- Since the physical relationships no longer apply, drop k. So $p = e^{(-\Delta E/T)}$

- We need an annealing schedule, which is a sequence of values of T: $T_0, T_1, T_2, ...$
Simulated Annealing Algorithm

• current <- start state; if it’s a goal, return it

• for each T on the schedule /* need a schedule */

 – next <- randomly selected successor of current
 – evaluate next; if it’s a goal, return it

 – ΔE <- value(next) – value(current) /* already negated */
 – if $\Delta E > 0$

 • then current <- next /* better than current */
 • else current <- next with probability $e^{\Delta E / T}$

How would you do this probabilistic selection?
Simulated Annealing Properties

• At a fixed “temperature” T, state occupation probability reaches the Boltzmann distribution

\[p(x) = \alpha e^{(E(x)/kT)} \]

• If T is decreased slowly enough (very slowly), the procedure will reach the best state.

• Slowly enough has proven too slow for some researchers who have developed alternate schedules.
Local Beam Search

- Keeps more previous states in memory
 - Simulated annealing just kept one previous state in memory.
 - This search keeps \(k \) states in memory.

- randomly generate \(k \) initial states
- if any state is a goal, terminate
- else, generate all successors and select best \(k \)
- repeat

What does your book say is good about this?
Genetic Algorithms

- Start with random population of states
 - Representation serialized (i.e., strings of characters or bits)
 - States are ranked with “fitness function”
- Produce new generation
 - Select random pair(s) using probability:
 - probability \sim fitness
 - Randomly choose “crossover point”
 - Offspring mix halves
 - Randomly mutate bits

<table>
<thead>
<tr>
<th>Crossover</th>
<th>Mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>776511094281</td>
<td>776529844710</td>
</tr>
<tr>
<td>174629844710</td>
<td>174611094281</td>
</tr>
<tr>
<td>164629844710</td>
<td>776029844210</td>
</tr>
</tbody>
</table>