Database Systems
CSE 414

Section 10: Big Data & Review
Non-Parallel Query Evaluation
Example Schema

Product\((\text{pid}, \text{name}, \text{category}) \)
- 10,000 tuples and 1,000 blocks
- 40 different categories

Order\((\text{store}, \text{pid}, \text{price}, \text{quantity}) \)
- 1,000,000 tuples and 50,000 blocks
- prices range from $1 to $100
Example Query

Compute the total revenue, for each store, from electronics costing more than $5 each:

```
SELECT o.store, sum(o.price * o.quantity)
FROM Order o, Product p
WHERE o.pid = p.pid AND o.price > 5 AND
    p.category = 'electronics'
GROUP BY o.store
```
Problem 1

Give an RA expression that:
- computes the result of the query
- **does not** benefit from the indexes already present
Problem 2

Estimate the cost of the RA expression from Problem 1 after filling in physical implementation details

- assume grouping / aggregation can be done on the fly
Problem 3

Give an RA expression that:
- computes the result of the query
- **does** benefit from the indexes already present
Problem 4

Estimate the cost of the RA expression from Problem 3 after filling in physical implementation details
 – assume grouping / aggregation can be done on the fly
Parallel Query Evaluation
Problem 5

Draw a pipeline that computes the same result in a parallel fashion using N nodes.
Problem 6

Estimate the cost of executing the pipeline of Problem 5
Problem 7

1. Does your analysis predict a linear speedup as more nodes are added?

2. Does your analysis predict a linear scaleup as more nodes are added?

3. How realistic is this?
Problem 8

Describe how to achieve a similar speedup with MapReduce
Problem 9

Would your MapReduce have the same IO cost and speedup as the pipeline from problem 6?