Database Systems
CSE 414

Lecture 26: Spark
Announcements

• HW8 due next Fri

• Extra office hours today: Rajiv @ 6pm in CSE 220

• No lecture Monday (holiday)

• Guest lecture Wednesday
 – Kris Hildrum from Google will be here
 – she works on technologies related to Spark etc.
 – whatever she talks about will be on the final
Spark

• Open source system from Berkeley
• Distributed processing over HDFS
• Differences from MapReduce:
 – Multiple steps, including iterations
 – Stores intermediate results in main memory
 – Supports SQL
• Details: http://spark.apache.org/examples.html
Spark Interface

• Spark supports a Scala interface
 • Scala = ext of Java with functions/closures
 – will show Scala/Spark examples shortly…

• Spark also supports a SQL interface
 • It compiles SQL into Scala
 • For HW8: you only need the SQL interface!
RDD

- RDD = Resilient Distributed Datasets
 - A distributed relation, together with its lineage
 - Lineage = expression that says how that relation was computed = a relational algebra plan

- Spark stores intermediate results as RDD

- If a server crashes, its RDD in main memory is lost. However, the driver (=master node) knows the lineage, and will simply recompute the lost partition of the RDD
Programming in Spark

• A Spark/Scala program consists of:
 – Transformations (map, reduce, join…). Lazy
 – Actions (count, reduce, save…). Eager

• RDD[T] = an RDD collection of type T
 – Partitioned, recoverable (through lineage), not nested

• Seq[T] = a Scala sequence
 – Local to a server, may be nested
Example

Given a large log file hdfs://logfile.log retrieve all lines that:

• Start with “ERROR”
• Contain the string “sqlite”

```scala
lines = spark.textFile("hdfs://logfile.log");
errors = lines.filter(_.startsWith("ERROR"));
sqlerrors = errors.filter(_.contains("sqlite"));
sqlerrors.collect()
```
Example

Given a large log file hdfs://logfile.log retrieve all lines that:
- Start with “ERROR”
- Contain the string “sqlite”

```scala
lines = spark.textFile("hdfs://logfile.log");
errors = lines.filter(_.startsWith("ERROR"));
sqllerrors = errors.filter(_.contains("sqlite"));
sqlerrors.collect()
```
MapReduce Again…

Steps in Spark resemble MapReduce:

• `col.filter(p)` applies in parallel the predicate `p` to all elements `x` of the partitioned collection, and returns those `x` where `p(x) = true`

• `col.map(f)` applies in parallel the function `f` to all elements `x` of the partitioned collection, and returns a new partitioned collection
• Functions with one argument:

 _ . contains("sqlite")

 _ > 6

• Functions with more arguments

 (x => x.contains("sqlite"))

 (x => x > 6)

 ((x,y) => x+3*y)

• Closures (functions with variable references):

 var x = 5; rdd.filter(_ > x)

 var s = "sqlite"; rdd.filter(x => x.contains(s))
Persistence

```java
lines = spark.textFile("hdfs://logfile.log");
extrors = lines.filter(_.startsWith("ERROR")).
sqlerrors = errors.filter(_.contains("sqlite")).
sqlerrors.collect()
```

If any server fails before the end, then Spark must restart
lines = spark.textFile("hdfs://logfile.log");
errors = lines.filter(_.startsWith("ERROR"));
sqlerrors = errors.filter(_.contains("sqlite"));
sqlerrors.collect()

If any server fails before the end, then Spark must restart
Persistence

If any server fails before the end, then Spark must restart

```scala
lines = spark.textFile("hdfs://logfile.log");
errors = lines.filter(_.startsWith("ERROR"));
sqlerrors = errors.filter(_.contains("sqlite"));
sqlerrors.collect()
```

Spark can recompute the result from errors

```scala
lines = spark.textFile("hdfs://logfile.log");
errors = lines.filter(_.startsWith("ERROR"));
errors.persist()
sqlerrors = errors.filter(_.contains("sqlite"));
sqlerrors.collect()
```
Persistence

If any server fails before the end, then Spark must restart

```scala
lines = spark.textFile("hdfs://logfile.log");
errors = lines.filter(_.startsWith("ERROR"));
sqlerrors = errors.filter(_.contains("sqlite"));
sqlerrors.collect()
```

Spark can recompute the result from errors

```scala
lines = spark.textFile("hdfs://logfile.log");
errors = lines.filter(_.startsWith("ERROR"));
errors.persist()
sqlerrors = errors.filter(_.contains("sqlite"));
sqlerrors.collect()
```
Example

```
SELECT count(*) FROM R, S 
WHERE R.B > 200 and S.C < 100 and R.A = S.A

R = spark.textFile("R.csv").map(parseRecord).persist()
S = spark.textFile("S.csv").map(parseRecord).persist()
RB = R.filter((a,b) => b > 200).persist()
SC = S.filter((a,c) => c < 100).persist()
J = RB.join(SC).persist()
J.count();
```
Programming in Spark

• A Spark/Scala program consists of:
 – Transformations (map, reduce, join…). Lazy
 – Actions (count, reduce, save...). Eager

• RDD[T] = an RDD collection of type T
 – Partitioned, recoverable (through lineage), not nested

• Seq[T] = a Scala sequence
 – Local to a server, may be nested
Transformations:

<table>
<thead>
<tr>
<th>Function</th>
<th>Signature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>map(f : T => U)</td>
<td>RDD[T] => RDD[U]</td>
<td>Applies function <code>f</code> to each element of <code>RDD[T]</code></td>
</tr>
<tr>
<td>flatMap(f: T => Seq[U])</td>
<td>RDD[T] => RDD[U]</td>
<td>Flattens the result of applying function <code>f</code></td>
</tr>
<tr>
<td>filter(f:T=>Bool)</td>
<td>RDD[T] => RDD[T]</td>
<td>Filters out elements that do not pass <code>f</code></td>
</tr>
<tr>
<td>groupByKey()</td>
<td>RDD[(K,V)] => RDD[(K,Seq[V])]</td>
<td>Groups elements by key and releases values</td>
</tr>
<tr>
<td>reduceByKey(F:(V,V) => V)</td>
<td>RDD[(K,V)] => RDD[(K,V)]</td>
<td>Reduces values to a single value</td>
</tr>
<tr>
<td>union()</td>
<td>(RDD[T],RDD[T]) => RDD[T]</td>
<td>Unions two <code>RDD[T]</code>s</td>
</tr>
<tr>
<td>join()</td>
<td>(RDD[(K,V)],RDD[(K,W)]) => RDD[(K,(V,W))]</td>
<td>Joins by key, merging values</td>
</tr>
<tr>
<td>cogroup()</td>
<td>(RDD[(K,V)],RDD[(K,W)]) => RDD[(K,(Seq[V],Seq[W]))]</td>
<td>Cogroups by key, merging values</td>
</tr>
<tr>
<td>crossProduct()</td>
<td>(RDD[T],RDD[U]) => RDD[(T,U)]</td>
<td>Cross products two <code>RDD</code> collections</td>
</tr>
</tbody>
</table>

Actions:

<table>
<thead>
<tr>
<th>Function</th>
<th>Signature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>count()</td>
<td>RDD[T] => Long</td>
<td>Counts elements</td>
</tr>
<tr>
<td>collect()</td>
<td>RDD[T] => Seq[T]</td>
<td>Collects all elements</td>
</tr>
<tr>
<td>reduce(f:(T,T)=>T)</td>
<td>RDD[T] => T</td>
<td>Reduces elements to a single value</td>
</tr>
<tr>
<td>save(path:String)</td>
<td></td>
<td>Outputs <code>RDD</code> to a storage system e.g. HDFS</td>
</tr>
</tbody>
</table>
MapReduce ~> Spark

- input into an RDD
- map phase becomes `.flatMap`
- shuffle & sort becomes `.groupByKey`
- reduce becomes another `.flatMap`
- save output to HDFS
SQL \rightarrow Spark

- You know enough to execute SQL on Spark!
- Idea: (1) SQL to RA + (2) RA on Spark
 - σ = filter
 - π = map
 - γ = groupByKey
 - \times = crossProduct
 - \bowtie = join
- Spark SQL does small optimizations to RA
- Also chooses btw broadcast and parallel joins
PageRank

- Page Rank is an algorithm that assigns to each page a score such that pages have higher scores if more pages with high scores link to them.
- Page Rank was introduced by Google, and, essentially, defined Google.
PageRank toy example

Superstep 0

Superstep 1

Superstep 2

Input graph

http://www.slideshare.net/sscdotopen/large-scale/20
for $i = 1$ to n:
 $r[i] = 1/n$

repeat
 for $j = 1$ to n:
 $\text{contribs}[j] = 0$
 for $i = 1$ to n:
 $k = \text{links}[i].\text{length}()$
 for j in $\text{links}[i]$:
 $\text{contribs}[j] += r[i] / k$
 for $i = 1$ to n:
 $r[i] = \text{contribs}[i]$
 until convergence

/* usually 10-20 iterations */

Random walk interpretation:

Start at a random node i
At each step, randomly choose an outgoing link and follow it.
Repeat for a very long time

$r[i] = \text{prob. that we are at node } i$
for i = 1 to n:
 r[i] = 1/n

repeat
 for j = 1 to n: contribs[j] = 0
 for i = 1 to n:
 k = links[i].length()
 for j in links[i]:
 contribs[j] += r[i] / k
 for i = 1 to n: r[i] = contribs[i]
until convergence
/* usually 10-20 iterations */

Random walk interpretation:
Start at a random node i
At each step, randomly choose an outgoing link and follow it.

Improvement: with small prob. a restart at a random node.

\[
 r[i] = a/N + (1-a)\times\text{contribs}[i]
\]

where \(a \in (0,1) \)
is the restart probability
PageRank

for i = 1 to n:
 r[i] = 1/n

repeat
 for j = 1 to n: contribs[j] = 0
 for i = 1 to n:
 k = links[i].length()
 for j in links[i]:
 contribs[j] += r[i] / k
 for i = 1 to n: r[i] = a/N + (1-a)*contribs[i]
until convergence
/* usually 10-20 iterations */

// SPARK
val links = spark.textFile(..).map(..).persist()
var ranks = // RDD of (URL, 1/n) pairs
for (k <- 1 to ITERATIONS) {
 // Build RDD of (targetURL, float) pairs
 // with contributions sent by each page
 val contribs = links.join(ranks).flatMap {
 (url, (links,rank)) =>
 links.map(dest => (dest, rank/links.size))
 }
 // Sum contributions by URL and get new ranks
 ranks = contribs.reduceByKey((x,y) => x+y)
 .mapValues(sum => a/n + (1-a)*sum)
}
Google Dataflow

• Similar to Spark/Scala
• Allows you to lazily build pipelines and then execute them

• Much simpler than multi-job MapReduce
Dataflow Example Pipeline

Counting words again…
Dataflow Example Code

Pipeline p = Pipeline.create(options);

p.apply(TextIO.Read.from("gs://dataflow-samples/shakespeare/kinglear.txt"))
 .apply(ParDo.named("ExtractWords").of(new DoFn<String, String>() {
 @Override
 public void processElement(ProcessContext c) {
 for (String word : c.element().split("[^a-zA-Z']+")) {
 if (!word.isEmpty()) {
 c.output(word);
 }
 }
 }
 }))

Read lines into PCollection

map line to bag of words
Dataflow Example Code cont.

.apply(Count.<String>perElement())

.apply(MapElements.via(new SimpleFunction<KV<String, Long>, String>() {
 @Override
 public String apply(KV<String, Long> element) {
 return element.getKey() + " : " + element.getValue();
 }
}))

.apply(TextIO.Write.to("gs://my-bucket/counts.txt"));

p.run();

Write results into GFS

execute now

built-in routine to count occurrences

(“foo”, 3) ~> “foo: 3”
Summary

• Parallel databases
 – Predefined relational operators
 – Optimization
 – Transactions

• MapReduce
 – User-defined map and reduce functions
 – Must implement/optimize manually relational ops
 – No updates/transactions

• Spark
 – Predefined relational operators
 – Must optimize manually
 – No updates/transactions
All of these technologies use dataflow engines:
 - Google Dataflow (on top of MapReduce)
 - Spark (on top of Hadoop)
 - AsterixDB (on top of Hyracks)

Spark & AsterixDB map SQL to a dataflow pipeline
 - SQL ~> RA ~> dataflow operators (group, join, map)
 - could do the same thing for Google Dataflow

None of these systems optimize RA very well (as of 2015)
 - Spark has no indexes
 - AsterixDB has indexes but no statistics

Future work should improve that