Introduction to Data Management (Database Systems)
CSE 414

Lecture 1: Introduction

Overload: https://catalyst.uw.edu/webq/survey/cseadv/328147
(fill this out by Wednesday evening)
• The world is drowning in data!
• LSST produces 30 TB of data per night
 – Large Synoptic Survey Telescope
 – 9 PB per year
• LHC produced 25 PB in 2012 trying to find Higgs boson
 – Large Hadron Collider
• Affects almost every modern application…
Your New App…

- Suppose 10M monthly active, 2M daily active
- Record 20K per page view / request
- 200 request per session
- Analyzing 3 months of data for trends: 1TB of data
Data Management is Universal

• Managing data is at the core of most apps / services
 – whether they store small or large amounts of data
 – whether they are modern systems or older ones

• Hard problems even with small amounts of data
 – we’ll see discuss examples later on…

• Doing it right typically makes the everything else easier
Motivation

• The world is drowning in data
 – affects almost every app / service

• Need professionals to help manage it
 – help domain scientists achieve new discoveries
 – help companies provide better services
 – help governments become more efficient

• CSE 414: Introduction to Data Management
 – covers both principles and tools
Staff

• **Instructor:** Kevin Zatloukal
 – kevinz at cs | zat at uw

• **TAs:**
 – Weston Wei (AA), Rajiv Veeraraghavan (AB), Antony Liu (AC), Ryan Maas (AD), Lisa Zhang

• **Office hours:** check web site

• **Contacting staff:**
 – Discussion board for most things. Otherwise cse414-staff at cs
About Me

• Worked at Google, BEA Systems, startup, Microsoft

• PhD from MIT

• UW graduate
 – second generation

• Husky football season ticket holder
 – third generation
Course Format

• Lectures MWF, 3:30-4:20 pm
 – Location: here!

• Sections: Thursdays
 – Content: exercises, tutorials, questions
 – Locations: see web

• 8 homework assignments
 – submit via catalyst dropbox

• 6 web quizzes

• Midterm and final
Communications

• **Web page:**
 https://courses.cs.washington.edu/courses/cse414
 – Syllabus is there
 – Lecture slides will be available there
 – Homework assignments will be available there
 – Link to web quizzes is there

• **Mailing list**
 – Announcements (low traffic – must read)
 – Registered students automatically subscribed

• **Discussion board**
 – **THE** place to ask course-related questions
 – Today, go to board and enable notifications
Textbook

Main textbook, available at the bookstore:

Second edition.

Covers most but not all of course content.
Other Texts

Available at the Engineering Library:

- *Database Management Systems*, Ramakrishnan
- *Fundamentals of Database Systems*, Elmasri, Navathe
- *Foundations of Databases*, Abiteboul, Hull, Vianu
- *Data on the Web*, Abiteboul, Buneman, Suciu
Grading

• Homeworks 30%
• Web quizzes 20%
• Midterm 20%
• Final 30%
Eight Homework Assignments

H1&H2: Basic SQL with SQLite
H3: Advanced SQL with SQL Server
H4: Relational algebra, Datalog
H5: JSON and AsterixDB
H6: Conceptual Design
H7: SQL in Java (JDBC)
H8: Parallel processing
About the Assignments

• Homework assignments will take time but most time should be spent *learning*

• Do them on your own

• Very practical

• Put everything on your resume!!!
 – SQL, SQLite, SQL Server, Azure, JDBC, JSON, AWS, MapReduce, Hadoop, Spark, AsterixDB…
Deadlines and Late Days

- Assignments are expected to be done on time, but things happen, so…
- You have up to 4 late days
 - No more than 2 on any one assignment
 - Use in 24-hour chunks
- Late days = safety net, not convenience!
 - You should not plan on using them
 - If you use all 4 you are doing it wrong
Six Web Quizzes

- http://www.newgradiance.com/services/
- Create account, add class with token
 - Class token on the white board: write it down!
- Short tests
- Can take many times — best score counts
- No late days — closes at 11:00 deadline
- See explanations for wrong answers
Exams

• Midterm and Final
 – See course calendar for dates and times

• Allowed 1 letter-size paper (double-side) with notes

• Closed book. No computers, phones, watches, etc.

• Check course website for dates

• Location: in class
Academic Integrity

• Anything you submit for credit is expected to be your own work
 – encouraged to exchange ideas, but not detailed solutions
 – we all know difference between collaboration and cheating
 – attempt to gain credit for work you did not do is misconduct

• I trust you implicitly, but will come down hard on any violations of that trust
Outline of Today’s Lecture

• Overview of database mgmt systems
 – Why they are helpful
 – What are some of their key features
 – What are some of their key concepts

• Course content
Database

What is a database?
• A collection of files storing related data

Examples of databases
• Accounts database; payroll database; UW’s students database; Amazon’s products database; airline reservation database
Database Management System

What is a DBMS?

- A big program written by someone else that allows us to manage efficiently a large database and allows it to persist over long periods of time

Examples of DBMSs

- Oracle, IBM DB2, Microsoft SQL Server, Vertica, Teradata
- Open source: MySQL (Sun/Oracle), PostgreSQL, AsterixDB
- Open source library: SQLite

We will focus on relational DBMSs most quarter
An Example: Online Bookseller

• What data do we need?
 – Data about books, customers, pending orders, order histories, trends, preferences, etc.
 – Data about sessions (clicks, pages, searches)
 – Note: data must be persistent! Outlive application
 – Also note that data is large… won’t fit all in memory

• What capabilities on the data do we need?
 – Insert/remove books, find books by author/title/etc., analyze past order history, recommend books, …
 – Data must be accessed efficiently, by many users
 – Data must be safe from failures and malicious users and bugs!
Multi-User Issues

• Jane and John both have ID number for gift certificate (credit) of $200 they got as a wedding gift
 – Jane @ her office orders "The Selfish Gene, R. Dawkins" ($80)
 – John @ his office orders "Guns and Steel, J. Diamond" ($100)

• Questions:
 – What is the ending credit?
 – What if second book costs $130?
 – What if the server crashes?
 – What if the data center goes offline?
Required Functionality for Data Management

1. Describe real-world entities in terms of stored data
2. Persistently store large datasets
3. Efficiently query & update
 - Must handle complex questions about data
 - Must handle sophisticated updates
 - Performance matters (users can feel 200ms latency)
4. Easily change structure (e.g., add attributes)
5. Enable simultaneous updates
6. Crash recovery
7. Security and integrity
DataBase Management System (DBMS)

- Very difficult to implement all these features inside the application (correctly)
- DBMS provides these features (and more)
- DBMS simplifies application development
Client-Server Architecture

• One server that stores the database (DBMS):
 – Usually a beefy system
 – But can be your own desktop…
 – … or a huge cluster running a parallel DBMS

• Many clients run apps and connect to DBMS
 – E.g. Microsoft’s Management Studio
 – Or psql (for PostgreSQL)
 – Or some Java/C++ program (very typical)

• Clients “talk” to server using JDBC protocol
 • Often phone/browser <~> web server <~> DBMS
Key People

- **DB application developer**: writes programs that query and modify data
- **DB designer**: establishes schema
- **DB administrator**: loads data, tunes system, keeps whole thing running
- **Data analyst**: data mining, data integration
- **DBMS implementer**: builds the DBMS
Key Concepts

- **Data models**: how to describe real-world data
 - Relational, XML, JSON

- **Schema vs data**

- **Declarative query language**
 - Say what you want not how to get it

- **Data independence**
 - Physical independence: Can change how data is stored on disk without maintenance to applications
 - Logical independence: can change schema w/o affecting apps

- **Query optimizer** and compiler

- **Transactions**: isolation and atomicity
What This Course Contains

- **Focus: Using DBMSs**
- Relational Data Model
 - SQL, Relational Algebra, Relational Calculus, Datalog
- Semistructured Data Model
 - JSON, NoSQL, AsterixDB
- Conceptual design
 - E/R diagrams, Views, and Database normalization
- Transactions
- Parallel databases, MapReduce, and Spark
What to Do Now

• https://courses.cs.washington.edu/courses/cse414/

• Web quiz 1 is open
 – Create account at http://newgradiance.com/services/
 – Sign up for class (use token from whiteboard)
 – Due next Sunday, 11 pm

• Homework 1 is posted
 – Simple queries in SQL Lite
 – Due one week from tomorrow (Tuesday), 11 pm

• Use discussion board if you have questions about HW