Introduction to Data Management (Database Systems)
CSE 414

Lecture 1: Introduction

Overload: https://catalyst.uw.edu/webq/survey/cseadv/328147
(fill this out by Wednesday evening)

- The world is drowning in data!
- LSST produces 30 TB of data per night
 - Large Synoptic Survey Telescope
 - 9 PB per year
- LHC produced 25 PB in 2012 trying to find Higgs boson
 - Large Hadron Collider
- Affects almost every modern application...

Your New App...

- Suppose 10M monthly active, 2M daily active
- Record 20K per page view / request
- 200 request per session
- Analyzing 3 months of data for trends: 1TB of data

Data Management is Universal

- Managing data is at the core of most apps / services
 - whether they store small or large amounts of data
 - whether they are modern systems or older ones
- Hard problems even with small amounts of data
 - we’ll see discuss examples later on…
- Doing it right typically makes the everything else easier

Motivation

- The world is drowning in data
 - affects almost every app / service
- Need professionals to help manage it
 - help domain scientists achieve new discoveries
 - help companies provide better services
 - help governments become more efficient
- CSE 414: Introduction to Data Management
 - covers both principles and tools

Staff

- Instructor: Kevin Zatloukal
 - kevinz at cs | zat at uw
- TAs:
 - Weston Wei (AA), Rajiv Veeraraghavan (AB), Antony Liu (AC), Ryan Maas (AD), Lisa Zhang
- Office hours: check web site
- Contacting staff:
 - Discussion board for most things. Otherwise cse414-staff at cs
About Me

• Worked at Google, BEA Systems, startup, Microsoft
• PhD from MIT
• UW graduate
 – second generation
• Husky football season ticket holder
 – third generation

Course Format

• Lectures MWF, 3:30-4:20 pm
 – Location: here!
• Sections: Thursdays
 – Content: exercises, tutorials, questions
 – Locations: see web
• 8 homework assignments
 – submit via catalyst dropbox
• 6 web quizzes
• Midterm and final

Communications

• Web page:
 https://courses.cs.washington.edu/courses/cse414
 – Syllabus is there
 – Lecture slides will be available there
 – Homework assignments will be available there
 – Link to web quizzes is there
• Mailing list
 – Announcements (low traffic – must read)
 – Registered students automatically subscribed
• Discussion board
 – THE place to ask course-related questions
 – Today, go to board and enable notifications

Textbook

Main textbook, available at the bookstore:

• Database Systems: The Complete Book,
 Hector Garcia-Molina,
 Jeffrey Ullman,
 Jennifer Widom
 Second edition.

Other Texts

Available at the Engineering Library:

• Database Management Systems, Ramakrishnan
• Fundamentals of Database Systems, Elmasri, Navathe
• Foundations of Databases, Abiteboul, Hull, Vianu
• Data on the Web, Abiteboul, Buneman, Suciu

Grading

• Homeworks 30%
• Web quizzes 20%
• Midterm 20%
• Final 30%
Eight Homework Assignments
H1&H2: Basic SQL with SQLite
H3: Advanced SQL with SQL Server
H4: Relational algebra, Datalog
H5: JSON and AsterixDB
H6: Conceptual Design
H7: SQL in Java (JDBC)
H8: Parallel processing

About the Assignments
• Homework assignments will take time but most
time should be spent “learning”
• Do them on your own
• Very practical
• Put everything on your resume!!!
 – SQL, SQLite, SQL Server, Azure, JDBC, JSON, AWS,
 MapReduce, Hadoop, Spark, AsterixDB,…

Deadlines and Late Days
• Assignments are expected to be done on
 time, but things happen, so…
• You have up to 4 late days
 – No more than 2 on any one assignment
 – Use in 24-hour chunks
• Late days = safety net, not convenience!
 – You should not plan on using them
 – If you use all 4 you are doing it wrong

Six Web Quizzes
• http://www.newgradiance.com/services/
• Create account, add class with token
 – Class token on the white board: write it down!
• Short tests
• Can take many times — best score counts
• No late days – closes at 11:00 deadline
• See explanations for wrong answers

Exams
• Midterm and Final
 – See course calendar for dates and times
• Allowed 1 letter-size paper (double-side) with notes
• Closed book. No computers, phones, watches, etc.
• Check course website for dates
• Location: in class

Academic Integrity
• Anything you submit for credit is expected
to be your own work
 – encouraged to exchange ideas, but not
detailed solutions
 – we all know difference between collaboration
 and cheating
 – attempt to gain credit for work you did not do
 is misconduct
• I trust you implicitly, but will come down
 hard on any violations of that trust
Outline of Today’s Lecture

• Overview of database mgmt systems
 – Why they are helpful
 – What are some of their key features
 – What are some of their key concepts

• Course content

Database

What is a database?
• A collection of files storing related data

Examples of databases
• Accounts database; payroll database; UW’s students database; Amazon’s products database; airline reservation database

Database Management System

What is a DBMS?
• A big program written by someone else that allows us to manage efficiently a large database and allows it to persist over long periods of time

Examples of DBMSs
– Oracle, IBM DB2, Microsoft SQL Server, Vertica, Teradata
– Open source: MySQL (Sun/Oracle), PostgreSQL, AsterixDB
– Open source library: SQLite

We will focus on relational DBMSs most quarter

An Example: Online Bookseller

What data do we need?
– Data about books, customers, pending orders, order histories, trends, preferences, etc.
– Data about sessions (clicks, pages, searches)
– Note: data must be persistent! Outlive application
– Also note that data is large… won’t fit all in memory

What capabilities on the data do we need?
– Insert/Remove books, find books by author/title/etc., analyze past order history, recommend books, …
– Data must be accessed efficiently, by many users
– Data must be safe from failures and malicious users and bugs!

Multi-User Issues

• Jane and John both have ID number for gift certificate (credit) of $200 they got as a wedding gift
 – Jane @ her office orders “The Selfish Gene, R. Dawkins” ($80)
 – John @ his office orders “Guns and Steel, J. Diamond” ($100)

• Questions:
 – What is the ending credit?
 – What if second book costs $130?
 – What if the server crashes?
 – What if the data center goes offline?

Required Functionality for Data Management

1. Describe real-world entities in terms of stored data
2. Persistently store large datasets
3. Efficiently query & update
 – Must handle complex questions about data
 – Must handle sophisticated updates
 – Performance matters (users can feel 200ms latency)
4. Easily change structure (e.g., add attributes)
5. Enable simultaneous updates
6. Crash recovery
7. Security and integrity
DataBase Management System (DBMS)

• Very difficult to implement all these features inside the application (correctly)
• DBMS provides these features (and more)
• DBMS simplifies application development

Client-Server Architecture

• One server that stores the database (DBMS):
 – Usually a beefy system
 – But can be your own desktop…
 – … or a huge cluster running a parallel DBMS
• Many clients run apps and connect to DBMS
 – E.g. Microsoft’s Management Studio
 – Or psql (for PostgreSQL)
 – Or some Java/C++ program (very typical)
• Clients “talk” to server using JDBC protocol
 • Often phone/browser <-> web server <-> DBMS

Key People

• DB application developer: writes programs that query and modify data
• DB designer: establishes schema
• DB administrator: loads data, tunes system, keeps whole thing running
• Data analyst: data mining, data integration
• DBMS implementer: builds the DBMS

Key Concepts

• Data models: how to describe real-world data
 – Relational, XML, JSON
• Schema vs data
• Declarative query language
 – Say what you want not how to get it
• Data independence
 – Physical independence: Can change how data is stored on disk without maintenance to applications
 – Logical independence: can change schema w/o affecting apps
• Query optimizer and compiler
• Transactions: isolation and atomicity

What This Course Contains

• Focus: Using DBMSs
• Relational Data Model
 – SQL, Relational Algebra, Relational Calculus, Datalog
• Semistructured Data Model
 – JSON, NoSQL, AsterixDB
• Conceptual design
 – E/R diagrams, Views, and Database normalization
• Transactions
• Parallel databases, MapReduce, and Spark

What to Do Now

• https://courses.cs.washington.edu/courses/cse414/
• Web quiz 1 is open
 – Create account at http://newgradiance.com/services/
 – Sign up for class (use token from whiteboard)
 – Due next Sunday, 11 pm
• Homework 1 is posted
 – Simple queries in SQL Lite
 – Due one week from tomorrow (Tuesday), 11 pm
• Use discussion board if you have questions about HW