
CSE	413	19wi	Memory	Management/Garbage	Collection	Notes	

	

	 1	

Memory	categories	/	lifetimes	

• Static	–	created	when	program	loaded,	lifetime	is	program	execution	
• Automatic	–	created	on	function	call,	lifetime	is	function	activation	(typically	

stack	allocated	since	function	calls	are	LIFO,	but	need	to	modify	if	closures	
can	capture	pointers	to	local	environments	–	languages	that	use	closures	
extensively	sometimes	allocate	all	function	variables	on	the	heap)	

• Dynamic	–	created	on	demand,	lifetime	until	no	longer	needed	(heap)	

	

Manual	memory	management:	malloc/free	(C);	new/delete	(C++),	others	

• Tight	control	over	memory	
• Error	prone	–	who	is	responsible	for	freeing	what	

o Memory	leaks	–	storage	allocated	but	not	released	when	done	
o Dangling	pointers	–	storage	is	released,	but	existing	pointer	to	that	

address	reused	later	

	

Automatic	strategies	

Reference	counting	

• Idea:	associate	a	count	with	each	piece	of	dynamic	data:	how	many	pointers	
(references)	exist	pointing	to	this	data	

o Increment	when	new	pointer	value	is	created	
o Decrement	when	pointer	changed	or	deleted	

§ If	reference	count	decremented	to	0,	delete	object	
• Example:	manipulating	reference	counts	on	p=q	assignment	
• Pros:	fairly	simple	to	implement;	precise	discovery	of	when	an	object	is	free	
• Cons:	

o Expensive	relative	to	cheap	pointer	operations	
o Fails	in	the	presence	of	cycles	

§ Partial	workaround:	weak	pointers/references.		Requires	
programming	discipline	to	avoid	memory	leaks	or	accidental	
deallocation	

• But	useful	for	resource	allocation	like	file	systems	where	overhead	is	low	
compared	to	other	operations	and	when	we	have	a	guarantee	of	no	cycles	

	 	



CSE	413	19wi	Memory	Management/Garbage	Collection	Notes	

	

	 2	

Automatic	garbage	collection	

• Basic	idea	
o Mark	all	memory	that	is	currently	in	use	
o Reclaim	all	memory	previously	allocated	that	is	no	longer	in	use	

• Key	concept:	reachable	(live)	data:	
o Root	set:	all	known	static	(global)	and	dynamic	(local)	variables.		

Everything	they	point	to	is	reachable	
§ Root	set	includes	things	like	registers	and	anonymous	compiler	

temporaries	that	hold	a	copy	of	a	pointer	
o Transitive	closure:	if	an	object	is	referenced	by	some	reachable	object	

then	it	too	is	reachable	

	

Classic	mark/sweep	garbage	collection	

• Associate	a	“mark	bit”	with	each	heap	object	
• When	each	new	object	is	allocated	(new,	cons,	etc.)	ensure	mark	bit	is	0.	

Mark/sweep	GC	pseudo	code:	

Precondition:	all	mark	bits	on	all	heap	objects	are	0	

Initialize	worklist	to	empty.		Every	item	on	the	worklist	is	an	object	that	(a)	is	
reachable	and	has	had	its	mark	bit	set	to	1	and	(b)	has	not	been	examined	to	see	
what	other	objects	it	references	

Gc()	=	mark_heap();	sweep();	

mark_heap()	=			//	sketch	–	would	need	to	check	null	ptrs	in	real	gc,	etc.	
	 for	each	variable	r	in	the	root	set	
	 	 obj	=	*r	
	 	 if		mark_bit(obj)	=	0	
	 	 	 mark_bit(obj)	=	1	
	 	 	 add	obj	to	worklist	
	 while	worklist	is	not	empty	
	 	 remove	next	object	p	from	worklist	
	 	 for	each	reference	variable	(pointer)	r	in	p	
	 	 	 obj	=	*r	
	 	 	 if		mark_bit(obj)	=	0	
	 	 	 	 mark_bit(obj)	=	1	
	 	 	 	 add	obj	to	worklist	
	 	



CSE	413	19wi	Memory	Management/Garbage	Collection	Notes	

	

	 3	

sweep()	=	
	 for	each	heap	object	
	 	 if	mark	bit	is	0	then	free	object	(add	to	free	list)	
	 	 else	set	mark	bit	to	0	(reset	for	next	gc)	

postcondition:	all	unused	heap	objects	have	been	freed	and	all	mark	bits	are	0	

example:	show	gc	after	

  (define x ‘(a b))   
  (define n (length (append x x)))  
  (define y (cons ‘c x)) 

	

Variations	–	lots	

Compacting/copying	collectors:	idea:	

• divide	heap	into	two	halves:	old	and	new	
• Allocate	objects	from	old	
• When	old	is	used	up,	copy	all	reachable	(live	objects)	to	new	

o Need	to	put	forwarding	pointers	in	place	from	old	objects	that	are	live	
to	new	copies,	then	update	all	discovered	pointers	to	point	to	new	
copies	as	other	objects	are	collected/moved	

• After	all	live	objects	are	copied,	swap	old	and	new	–	previous	old	is	now	free	
space	to	be	used	to	store	copies	of	live	data	on	next	collection	

Advantages	

• Heap	allocation	is	simple	and	very	cheap	–	no	free	list	needed,	just	keep	a	
“next	free”	pointer	in	half	where	objects	are	being	allocated	

• Keeps	live	heap	objects	contiguous	over	time;	avoids	heap	fragmentation	and	
minimizes	number	of	live	pages	

Disadvantages	

• Hard	to	use	all	memory	efficiently.		Either	half	is	not	used,	or,	if	we	try	to	take	
advantage	of	virtual	memory,	we	need	to	be	very	careful	about	thrashing	
(bad	vm	performance)	because	of	excessive	live	pages,	during	gc	especially	

	

Generational	collectors	

• Idea:	most	program	allocate	lots	of	short-lived	objects,	so	
• Biggest	payoff	is	normally	to	run	GC	only	on	portion	of	memory	with	recently	

allocated	objects	



CSE	413	19wi	Memory	Management/Garbage	Collection	Notes	

	

	 4	

• Divide	heap	into	small	part	for	new	objects	–	the	“nursery”	–	and	larger	part	
for	long-lived	objects.		GC	nursery	frequently,	entire	heap	rarely.		If	a	new	
object	survives	several	GCs	in	the	nursery,	promote	it	to	the	longer-lived	part	
of	the	heap	

	

Concurrent	collectors	

• “Stop	the	world”	isn’t	a	great	strategy	for	interactive	or	real-time	
computation.		Want	to	allow	GC	and	program	(“mutator”)	to	run	
concurrently,	often	with	GC	running	in	background	cleaning	up	memory	
when	time	is	available.	

• But:	much	more	complex,	hard	to	get	right	(proofs	needed,	hard	or	
impossible	to	reproduce	timing-related	bugs,	can’t	debug	into	correctness),	
etc.	

	

Real	world:	industrial-strength	GCs	these	days	use	a	mix	of	various	strategies,	
particularly	generational	and	concurrent	collectors.	

	


