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Goals

• Representing programs as data
• Racket structs as a better way to represent abstract 

programs (& other data)
• Writing interpreters to execute programs represented 

as data
• Using closures to implement higher-order functions

• This stuff is crucial for the next assignment
– Without it you will be totally lost
– With it, it’s challenging but straightforward
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Data structures in Racket

We’ve been using functions to abstract from lists
(make-expr left op right) => 

(list left op right)
(operator expr) => (cadr expr)
etc.

We could also build “weakly typed” or self-describing 
data by tagging each list:

(define (Const i)   (list ‘Const i))
(define (Add e1 e2) (list ‘Add e1 e2))
(define (Negate e)  (list ‘Negate e))

See sample code for more examples + evaluator
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Comments on what we did

Using lists where the car of the list encodes “what kind of 
expression”
Key points
• Defined our own constructor, test, extract-data functions

– Much better style than car, cadr, etc.
• Elegant recursive evaluator with big cond
• With no type system, no notion of “what is an expression” 

other than documentation
– But if we use the helper functions correctly, we’re ok
– Could add more explicit error checking if desired
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Racket structs

New Racket feature
(struct foo (bar baz bam)   #:transparent)

Defines a new kind of thing (type) and introduces several 
associate functions:
• Constructor: (foo e1 e2 e3)

– Returns a new “foo” with bar, baz, and bam fields 
initialized to e1, e2, e3

• Predicate: (foo? e)
– Evaluate e and return #t if it is something made with 

the foo (constructor) function
• Extractors: (foo-bar e)

– Evaluate e.  If result was made with the foo 
constructor, return the bar field, else an error

– Similar extractors for other fields (foo-baz, foo-bam)
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An idiom

(struct const (i)   #:transparent)
(struct add (e1 e2) #:transparent)
(struct negate (e)  #:transparent)

For “types” like expressions, create one struct for each “kind 
of” expression

– Conveniently definies constructors, tester, and 
extractor functions, e.g., add add? add-e1

– There’s nothing that ties add, negate, const together 
as the “expression type” other than the convention we 
have in our heads and in comments

– Also nothing that restricts “types” of fields – also just 
convention in code and in comments
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Representing program as trees

Can use either lists or structs (we’ll use structs) to build 
trees to represent compound data & programs

(add (const 4)
(negate (add (const 1)

(negate (const 7)))))

See code for more extensive set of struct defintions and 
associated evaluator for a small integer language
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Attributes

• #:transparent
– Optional; makes struct fields visible & for us prints 

them in the interactions window

Also available (and optional):
• #:mutable

– Can decide if each struct type supports mutation
• (we will avoid this; guarantees no mutation)

– mcons is just a predefined mutable struct
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Contrasting approaches

(struct add (e1 e2)   #:transparent)
vs

(define (add e1 e2) (list ‘add e1 e2)
(define (add? e) (eq? (car e) ‘add))
(define (add-e1) (car (cdr e)))
(define (add-e2) (car (cdr (cdr e))))

• This is not just “syntactic sugar”
– i.e., not just convenient syntax for writing 

something already in the language
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The key difference

(struct add (e1 e2) #:transparent)

• The result of evaluating (add x y) is not a list
– And there is no list for which add? returns #t

• struct makes a new kind of thing – a new type

• So using an “add” as an argument to car, cdr, etc. is 
a runtime error – not true for the version with lists
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Now 

Step back to look at approaches to implementing 
programming languages…
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Implementing languages

Much of the course so far has been about fundamental 
concepts for using PLs

Syntax, semantics, idioms
Important concepts like closures, delayed evaluation, …

But we also want to learn basics of implementing PLs
Requires fully understanding semantics
Things like closures and objects are not “magic”
Many programming techniques are related/similar

Ex: rendering a document (“program” is the structured 
document, “pixels” is the output)
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Typical workflow
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Interpreters or Compilers

The “rest of implementation” takes the abstract syntax tree 

(AST) as data and “runs the program” to produce a result

Two fundamental ways to implement a prog. lang. A

• Write an interpreter in another language B

– (Better names: evaluator, executor)

– Read program in A and produce an answer (in A)

• Write a compiler in another language B

– (Better name: translator)

– Read program in A, produce an equivalent program in 

another language C

– Translation must preserve meaning (equivalence) 

• We call B the “metalanguage”

– Crucial to keep A and B straight
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It’s really more complicated

Evaluation (interpreter) and translation (compiler) are 
the options, but many languages are implemented with 
both and have multiple layers
Example: Java

Compiler to bytecode intermediate language (.class)
Can interpret the bytecode directly, but also…
Can compile frequently executed code to binary 
The processor chip is an interpreter for binary

Except these days the chip translates x86 binary 
to a more primitive code that it executes

Racket uses a similar mix
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Sermon (er, rant)

Interpreter vs compiler vs combinations is about language 

implementation, not language definition

There is no such thing as a “compiled language” or 

“interpreted language”

Program cannot see how the implementation works

Unfortunately you hear things like this all the time:

“C is faster because it’s compiled and LISP is interpreted”

Nonsense: You can write a C interpreter or a LISP 

compiler

Please politely correct your managers, friends, and other 

professors.  J
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OK, they do have a point

A traditional compiler does not need the language 
implementation to run the program

Can “ship the binary” without the compiler

But Racket, Scheme, Javascript, Ruby, … have eval
At runtime can create data and treat it as a program
Then run that program
So we need an implementation (compiler, interpreter, 
combination) at runtime

It is also true that some languages are designed with a 
particular implementation strategy in mind, but it doesn’t 
mean they couldn’t be implemented differently.
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Embedding one language in another

How is (negate (add (const 2) (const 2)))
a “program” compared to “-(2+2)” ?

A traditional implementation includes a parser to read the string 
“-(2+2)” and turn it into a tree-like data structure called an abstract 
syntax tree (AST).

Ideal representation for either interpreting or as an intermediate 
stage in compiling
Our (negate ...)data structure is an AST

For now we’ll create trees directly and interpret them  
Will cover parsing later in the course

We’ll also assume perfect programmers and not worry about 
syntax errors – parser would normally guarantee legal AST

Interpreter still needs to worry about semantic (type) errors
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The arith-exp example

This embedding approach is exactly what we did to 
represent the language of arithmetic expressions using 
Racket structs

(struct const (i)   #:transparent)
(struct add (e1 e2) #:transparent)
(struct negate (e)  #:transparent)
(add (const 4)

(negate (add (const 1)
(negate (const 7)))))

The missing piece is to define the interpreter
(define (eval-exp e) … )
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The interpreter

An interpreter takes programs in the language and 
produces values (answers) in the language

Typically via recursive helper functions with cases
This example is so simple we don’t need helpers 
and can assume all recursive results are constants
(define (eval-exp e)

(cond
((const? e) e)
((add? e) 
(const (+ (const-i (eval-exp (add-e1 e)))

(const-i (eval-exp (add-e2 e))))))
((negate? e)
(const (- (const-i (eval-exp (negate-e e))))))

(#t (error “eval-exp expected an expression”))))

See example code – two versions, one with just ints, one with a 
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“Macros”

Another advantage of the embedding approach is we 
can use the metalanguage to define helper functions 
that create (new) programs in our language

They generate the (abstract) syntax
Result can then be put in a larger program or 
evaluated

Example – Racket functions that produce abstract code:
(define (triple x) (add x (add x x)))
(define p (add (const 1) (triple (const 2)))))

(all this does in create a program with 4 constant 
expressions)
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What’s missing

• Two major things missing from this language
– Variables: let bindings, function arguments
– Higher-order functions with lexical scope (closures)

• To support local variables:
– Interpreter function(s) need an environment as an 

additional argument
• Environment maps names to values
• A Racket association list works fine for us

– Evaluate a variable expression by looking up the name
– A let-body is evaluated in an augmented environment 

with the local binding(s)
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Higher-order functions

The “magic”: How is the “right environment” found for 
lexical scope when functions may return other functions, 
store them in data structures, etc.?
Lack of magic: The interpreter uses a closure data 
structure (with two parts) to keep the environment it will 
need to use later when the closure function is executed
To evaluate a function expression:

A function is not a value, a closure is a value
Evaluation of a function returns a closure

Create a closure out of (i) the function and (ii) the 
current environment

To evaluate a function call…

CSE413 Winter 2019 23



Function calls

To evaluate (call exp1 exp2)
Evaluate exp1 in the current environment to get a closure
Evaluate exp2 in the current environment to get a value
Evaluate the closure’s function’s body in the closure’s 
environment extended to map the function’s argument 
name to the argument value

We only will implement single-argument functions
For recursion, a function name will evaluate to its 
entire closure

This is the same semantics we’ve been learning 
Given a closure, the code part is always evaluated using the 
closure’s environment part (extended with the argument 
binding), not the current environment at the call site.
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Sounds expensive!

It isn’t!!
Time to build a closure is tiny: struct with two fields
Space to store closures might be large if the environment 
is large

But environments are immutable, so lots of sharing is 
natural and correct

Possible HW challenge problem (extra credit): when 
creating a closure store a possibly smaller environment 
holding only function free variables, i.e., “global” variables 
used in a function but not bound in it

Function body would never need anything else from the 
environment
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What’s next?

• Specific details of MUPL (interpreter assignment)
– Demo/questions now

• Then we’re mostly done with functional 
programming…

…but need to take out the garbage later
(and fit in a midterm exam when MUPL is done)

• After that: Ruby and object-oriented programming, 
grammars, scanners, parsers, more implementation
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