
CSE 413
Languages & Implementation

Hal Perkins
Winter 2019

Structs, Implementing Languages
(credits: Dan Grossman, CSE 341)

1CSE413 Winter 2019

Goals

• Representing programs as data
• Racket structs as a better way to represent abstract

programs (& other data)
• Writing interpreters to execute programs represented

as data
• Using closures to implement higher-order functions

• This stuff is crucial for the next assignment
– Without it you will be totally lost
– With it, it’s challenging but straightforward

2CSE413 Winter 2019

Data structures in Racket

We’ve been using functions to abstract from lists
(make-expr left op right) =>

(list left op right)
(operator expr) => (cadr expr)
etc.

We could also build “weakly typed” or self-describing
data by tagging each list:

(define (Const i) (list ‘Const i))
(define (Add e1 e2) (list ‘Add e1 e2))
(define (Negate e) (list ‘Negate e))

See sample code for more examples + evaluator
3CSE413 Winter 2019

Comments on what we did

Using lists where the car of the list encodes “what kind of
expression”
Key points
• Defined our own constructor, test, extract-data functions

– Much better style than car, cadr, etc.
• Elegant recursive evaluator with big cond
• With no type system, no notion of “what is an expression”

other than documentation
– But if we use the helper functions correctly, we’re ok
– Could add more explicit error checking if desired

CSE413 Winter 2019 4

Racket structs

New Racket feature
(struct foo (bar baz bam) #:transparent)

Defines a new kind of thing (type) and introduces several
associate functions:
• Constructor: (foo e1 e2 e3)

– Returns a new “foo” with bar, baz, and bam fields
initialized to e1, e2, e3

• Predicate: (foo? e)
– Evaluate e and return #t if it is something made with

the foo (constructor) function
• Extractors: (foo-bar e)

– Evaluate e. If result was made with the foo
constructor, return the bar field, else an error

– Similar extractors for other fields (foo-baz, foo-bam)

CSE413 Winter 2019 5

An idiom

(struct const (i) #:transparent)
(struct add (e1 e2) #:transparent)
(struct negate (e) #:transparent)

For “types” like expressions, create one struct for each “kind
of” expression

– Conveniently definies constructors, tester, and
extractor functions, e.g., add add? add-e1

– There’s nothing that ties add, negate, const together
as the “expression type” other than the convention we
have in our heads and in comments

– Also nothing that restricts “types” of fields – also just
convention in code and in comments

6CSE413 Winter 2019

Representing program as trees

Can use either lists or structs (we’ll use structs) to build
trees to represent compound data & programs

(add (const 4)
(negate (add (const 1)

(negate (const 7)))))

See code for more extensive set of struct defintions and
associated evaluator for a small integer language

7CSE413 Winter 2019

Attributes

• #:transparent
– Optional; makes struct fields visible & for us prints

them in the interactions window

Also available (and optional):
• #:mutable

– Can decide if each struct type supports mutation
• (we will avoid this; guarantees no mutation)

– mcons is just a predefined mutable struct

CSE413 Winter 2019 8

Contrasting approaches

(struct add (e1 e2) #:transparent)
vs

(define (add e1 e2) (list ‘add e1 e2)
(define (add? e) (eq? (car e) ‘add))
(define (add-e1) (car (cdr e)))
(define (add-e2) (car (cdr (cdr e))))

• This is not just “syntactic sugar”
– i.e., not just convenient syntax for writing

something already in the language

CSE413 Winter 2019 9

The key difference

(struct add (e1 e2) #:transparent)

• The result of evaluating (add x y) is not a list
– And there is no list for which add? returns #t

• struct makes a new kind of thing – a new type

• So using an “add” as an argument to car, cdr, etc. is
a runtime error – not true for the version with lists

CSE413 Winter 2019 10

Now

Step back to look at approaches to implementing
programming languages…

CSE413 Winter 2019 11

Implementing languages

Much of the course so far has been about fundamental
concepts for using PLs

Syntax, semantics, idioms
Important concepts like closures, delayed evaluation, …

But we also want to learn basics of implementing PLs
Requires fully understanding semantics
Things like closures and objects are not “magic”
Many programming techniques are related/similar

Ex: rendering a document (“program” is the structured
document, “pixels” is the output)

CSE413 Winter 2019 12

Typical workflow

13 CSE413 Winter 2019

"(fn x => x + x) 4"
Parsing

Call

Function

+

Constant

4x

x x
Var Var

Type checking?

Possible
errors /
warnings

Rest of implementation

Possible
errors /
warnings

concrete syntax (string)

abstract syntax (tree)

Interpreters or Compilers

The “rest of implementation” takes the abstract syntax tree

(AST) as data and “runs the program” to produce a result

Two fundamental ways to implement a prog. lang. A

• Write an interpreter in another language B

– (Better names: evaluator, executor)

– Read program in A and produce an answer (in A)

• Write a compiler in another language B

– (Better name: translator)

– Read program in A, produce an equivalent program in

another language C

– Translation must preserve meaning (equivalence)

• We call B the “metalanguage”

– Crucial to keep A and B straight

14CSE413 Winter 2019

It’s really more complicated

Evaluation (interpreter) and translation (compiler) are
the options, but many languages are implemented with
both and have multiple layers
Example: Java

Compiler to bytecode intermediate language (.class)
Can interpret the bytecode directly, but also…
Can compile frequently executed code to binary
The processor chip is an interpreter for binary

Except these days the chip translates x86 binary
to a more primitive code that it executes

Racket uses a similar mix
15CSE413 Winter 2019

Sermon (er, rant)

Interpreter vs compiler vs combinations is about language

implementation, not language definition

There is no such thing as a “compiled language” or

“interpreted language”

Program cannot see how the implementation works

Unfortunately you hear things like this all the time:

“C is faster because it’s compiled and LISP is interpreted”

Nonsense: You can write a C interpreter or a LISP

compiler

Please politely correct your managers, friends, and other

professors. J

16CSE413 Winter 2019

OK, they do have a point

A traditional compiler does not need the language
implementation to run the program

Can “ship the binary” without the compiler

But Racket, Scheme, Javascript, Ruby, … have eval
At runtime can create data and treat it as a program
Then run that program
So we need an implementation (compiler, interpreter,
combination) at runtime

It is also true that some languages are designed with a
particular implementation strategy in mind, but it doesn’t
mean they couldn’t be implemented differently.

17CSE413 Winter 2019

Embedding one language in another

How is (negate (add (const 2) (const 2)))
a “program” compared to “-(2+2)” ?

A traditional implementation includes a parser to read the string
“-(2+2)” and turn it into a tree-like data structure called an abstract
syntax tree (AST).

Ideal representation for either interpreting or as an intermediate
stage in compiling
Our (negate ...)data structure is an AST

For now we’ll create trees directly and interpret them
Will cover parsing later in the course

We’ll also assume perfect programmers and not worry about
syntax errors – parser would normally guarantee legal AST

Interpreter still needs to worry about semantic (type) errors

18CSE413 Winter 2019

The arith-exp example

This embedding approach is exactly what we did to
represent the language of arithmetic expressions using
Racket structs

(struct const (i) #:transparent)
(struct add (e1 e2) #:transparent)
(struct negate (e) #:transparent)
(add (const 4)

(negate (add (const 1)
(negate (const 7)))))

The missing piece is to define the interpreter
(define (eval-exp e) …)

19CSE413 Winter 2019

The interpreter

An interpreter takes programs in the language and
produces values (answers) in the language

Typically via recursive helper functions with cases
This example is so simple we don’t need helpers
and can assume all recursive results are constants
(define (eval-exp e)

(cond
((const? e) e)
((add? e)
(const (+ (const-i (eval-exp (add-e1 e)))

(const-i (eval-exp (add-e2 e))))))
((negate? e)
(const (- (const-i (eval-exp (negate-e e))))))

(#t (error “eval-exp expected an expression”))))

See example code – two versions, one with just ints, one with a
second boolean type 20CSE413 Winter 2019

“Macros”

Another advantage of the embedding approach is we
can use the metalanguage to define helper functions
that create (new) programs in our language

They generate the (abstract) syntax
Result can then be put in a larger program or
evaluated

Example – Racket functions that produce abstract code:
(define (triple x) (add x (add x x)))
(define p (add (const 1) (triple (const 2)))))

(all this does in create a program with 4 constant
expressions)

21CSE413 Winter 2019

What’s missing

• Two major things missing from this language
– Variables: let bindings, function arguments
– Higher-order functions with lexical scope (closures)

• To support local variables:
– Interpreter function(s) need an environment as an

additional argument
• Environment maps names to values
• A Racket association list works fine for us

– Evaluate a variable expression by looking up the name
– A let-body is evaluated in an augmented environment

with the local binding(s)

22CSE413 Winter 2019

Higher-order functions

The “magic”: How is the “right environment” found for
lexical scope when functions may return other functions,
store them in data structures, etc.?
Lack of magic: The interpreter uses a closure data
structure (with two parts) to keep the environment it will
need to use later when the closure function is executed
To evaluate a function expression:

A function is not a value, a closure is a value
Evaluation of a function returns a closure

Create a closure out of (i) the function and (ii) the
current environment

To evaluate a function call…

CSE413 Winter 2019 23

Function calls

To evaluate (call exp1 exp2)
Evaluate exp1 in the current environment to get a closure
Evaluate exp2 in the current environment to get a value
Evaluate the closure’s function’s body in the closure’s
environment extended to map the function’s argument
name to the argument value

We only will implement single-argument functions
For recursion, a function name will evaluate to its
entire closure

This is the same semantics we’ve been learning
Given a closure, the code part is always evaluated using the
closure’s environment part (extended with the argument
binding), not the current environment at the call site.

24CSE413 Winter 2019

Sounds expensive!

It isn’t!!
Time to build a closure is tiny: struct with two fields
Space to store closures might be large if the environment
is large

But environments are immutable, so lots of sharing is
natural and correct

Possible HW challenge problem (extra credit): when
creating a closure store a possibly smaller environment
holding only function free variables, i.e., “global” variables
used in a function but not bound in it

Function body would never need anything else from the
environment

25CSE413 Winter 2019

What’s next?

• Specific details of MUPL (interpreter assignment)
– Demo/questions now

• Then we’re mostly done with functional
programming…

…but need to take out the garbage later
(and fit in a midterm exam when MUPL is done)

• After that: Ruby and object-oriented programming,
grammars, scanners, parsers, more implementation

26CSE413 Winter 2019

