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Question 1. (18 points)  Suppose we have the following definitions in a Racket program: 
 
(define w '((a) b c)) 
(define x (append (car w) (cdr w))) 
(define y (list (cadr w) (cddr w))) 
(define z (list (cdr w) y (cddr x))) 
 
(a) (12 points) Draw a diagram showing the combined results of evaluating these definitions together in 
the given order in a newly reset Racket environment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) (6 points) What are the values displayed if w, x, y, and z are printed by Racket? 
 
w:  ‘((a) b c) 
 
x:  ‘(a b c) 
 
y:  ‘(b (c)) 
 
z:  ‘((b c) (b (c)) (c)) 
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Question 2.  (18 points)  (programming with lists)  (a) (9 points) Write a Racket function concat whose 
argument is a list of lists.  The function should return a single list containing all the elements of the 
original lists.  If one of the original lists contains a nested list as an element, that nested list should be 
included in the result as a single list element.  You should not define any additional (auxiliary) functions, 
local or not, and your solution does not need to be tail-recursive.  Hint: you will likely want to use 
Racket’s null? and append functions in your code.  Examples: 

(concat '()) ⇒ '() 
(concat '((a b) (c d))) ⇒ '(a b c d) 
(concat '(() (1) (2 3) () (4))) ⇒ '(1 2 3 4) 
(concat '((() w) () (x (y) ((z))))) ⇒ '(() w x (y) ((z))) 

 (Sample solution 4 lines – you don’t need to match that, but it might give some idea of what’s possible.) 

(define (concat lst)    ;; write your code below 

  (if (null? lst) 

      lst 

      (append (car lst) (concat (cdr lst))))) 

 
 
 
 
 
Question 2 (cont.) (b)  (9 points) Write a Racket function flatten whose argument is a list of nested 
lists.  The function should return a list with the contents of the original lists, with all inner lists collapsed 
into a sequence of non-list elements in the original order.  As before you should not define any auxiliary 
functions, but you will want to use the function concat from part (a).   Examples: 

(flatten '()) ⇒ '() 
(flatten '((a b) (c d))) ⇒ '(a b c d) 
(flatten '((() w) () (x (y) ((z))))) ⇒ '(w x y z) 
 

Hint:  You will find it helpful to use Racket’s list? and map functions in addition to concat.  (Sample 
solution 4 lines.) 

(define (flatten lst)    ;; write your code below 

  (if (list? lst) 

      (concat (map flatten lst)) 

      (list lst))) 
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Question 3.  (16 points, 8 each)  For this question you are to give two implementations of a function 
sum-greater that returns the sum of all numbers in a list that are greater than some threshold.  For 
example, (sum-greater ‘(2 1 7 5 3 6) 4) should evaluate to 18 because that is the sum of 
the three elements of the list (7, 5, and 6) that are greater than 4.  You should assume that the list 
argument contains only numbers and that the threshold (the second argument) is also a number. 

(a) Give an implementation of sum-greater using simple recursion and without using any higher-order 
functions (i.e., no map, filter, foldl, foldr, etc.).  For full credit your solution must be tail 
recursive, and any auxiliary (helper) functions must be defined inside of sum-greater, not externally.  
(Sample solutions 7-8 lines) 

(define (sum-greater lst thresh)    ;; write your code below 

  (letrec ([aux (lambda (lst acc) 

                  (cond [(null? lst) acc] 

                        [(> (car lst) thresh) 

                         (aux (cdr lst) (+ (car lst) acc))] 

                        [else (aux (cdr lst) acc)]))]) 

    (aux lst 0))) 

 

 

 

(b) Now give a second implementation of this function that solves the problem using higher-order 
Racket functions (map, etc.) and, if needed, using lambda to create anonymous functions, but does not 
have any conditional logic such as if or cond, and does not call any functions you have defined (even 
recursively).  Hints: don’t be intimidated by the restrictions – the solution is a fairly straightforward use 
of higher-order functions and should be much shorter than your version in part (a).  Also, recall that 
foldl combines values in a list using a given operator and identity element: (foldl op id lst) 
and is left associative.  foldr does the same but is right associative.  (Sample solution 2 lines) 

(define (sum-greater lst thresh)    ;; write your code below 

  (foldl + 0 (filter (lambda (elem) (> elem thresh)) lst))) 
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Question 4. (16 points) Environments.  Suppose we execute the following definitions in Racket: 
 
(define data (list 2 3)) 
 

(define make-func 
  (lambda (x) 
    (let ([x 1] 
          [f (lambda (y) 
               (cons x (cons y data)))]) 
      (lambda () (f 4))))) 
 

(define func (make-func 5)) 
 
(a) (12 points)  Draw a diagram showing the bindings, environments, and closures that exist after 
evaluating the above expressions.  You should only include environments that remain bound after the 
above expressions have finished evaluating, not any other environments that existed during evaluation 
but are no longer active at the end. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) (4 points)  What result is printed by Racket if we evaluate the expression (func) after the above 
definitions have been executed? 
 
‘(5 4 2 3)	  

global

…

data

make-func

func

let

x  1

f

<(x)(lambda (x) (let …),   >

<() (f 4),    >

make-func

x  5

2 3

<(y)(cons …),   >
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Question 5.  (16 points)  Streams. Recall that we can implement a stream in Racket as a thunk (a 0-
argument function) that, when called, returns a pair whose car is the current item in the stream and 
whose cdr is a stream (thunk) that will return the next element of the stream when used appropriately. 

Write a Racket function cycle whose argument is a list pattern and that returns a stream whose 
elements repeatedly cycle through the element of pattern.  When the stream reaches the end of 
pattern it should continue from the beginning and continue cycling indefinitely.  Examples: 

(cycle ‘(a b c)) => stream representing the sequence ‘a ‘b ‘c ‘a ‘b ‘c … 
(cycle ‘(a))     => stream representing the sequence ‘a ‘a ‘a ‘a ‘a … 

You can assume that the pattern will contain at least one element.  The elements in the pattern might 
be arbitrarily complex or have any type, but that should not have any effect on your solution.  

Hint: you might find it useful to have a private auxiliary function in the stream closure that takes a 
pattern and returns an updated pattern shifted by one position, e.g., ‘(a b c d) => ‘(b c d a) 
takes.  (Sample solutions 7-10 lines) 

(define (cycle pattern)     ;; write your solution here 
 
  (letrec ([shift (lambda (lst) 

                    (append (cdr lst) (list (car lst))))] 

           [f (lambda (lst) 

                (cons (car lst) (lambda () (f (shift lst)))))]) 

    (lambda () (f pattern))))) 
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Question 6.  (16 points)  Echoes of memo-like things.  Suppose we have the following two function 
definitions, which are identical except that the order of let and lambda are reversed at the beginning 
of the function definition. 

(define max-1 
  (lambda (arg) 
    (let ([max 0]) 
      (if (< arg max) 
          max 
          (begin (set! max arg) arg))))) 
 
(define max-2 
  (let ([max 0]) 
    (lambda (arg) 
      (if (< arg max) 
          max 
          (begin (set! max arg) arg))))) 
 

(a) (8 points) Now suppose we evaluate the following expressions one after the other in the order given 
below.  Each expression is evaluated after any effects from the previous expressions(s) have occurred.  
Give the values returned by each expression as it is evaluated in sequence. 

 

(max-1 10)  =>  10 

(max-2 20)  =>  20 

(max-1 5)   =>  5 

(max-2 15)  =>  20 

 

 

 
 
 
(continued on the next page)  
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Question 6. (cont.)  (b) (8 points) Explain the results you observed in part (a).  If changing the order of 
the let and lambda expressions did not change the results computed by max-1 and max-2 in part 
(a), explain why not.  If it did make a difference, give a brief explanation of what happened.  Feel free to 
include diagrams showing environments and closures if it helps explain things, but this is not required. 

 

The two functions do not have the same behavior. max-1 returns its argument or 0 if the argument is 
negative, while max-2 returns the maximum value that has ever been passed to it as an argument, or 
0 if it has never been called with a non-negative value. 

The closure bound to max-1 contains an ordinary (let …) expression and an environment pointer 
that refers to the global environment.  Each time max-1 is evaluated, a new let binding is created 
with max initialized to 0, and that environment is discarded after max-1 finishes, even if max was 
updated by set! during evaluation of max-1. 

When the max-2 closure is created, however, the lambda expression is evaluated inside the let 
environment that initially binds max to 0, and the environment pointer in that closure points to that 
let environment.  That means that every time max-2 is evaluated, the same let environment 
containing the same max is referenced, max is updated if the new argument is larger than the 
previous value of max, and the most recent value of max is returned. 

 

 


