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CSE	413	Midterm	Exam	

February	15,	2019	
 

Name _________________________________________  UW	ID	# _______________ 
 

The exam is closed book, closed notes, no electronic devices, signal flags, tin-can telephones, smoke 
signals, telepathy, tattoos, implants, or other signaling or communications apparatus. 
 
Style and indenting matter, within limits.  We’re not overly picky about details like an extra or a missing 
parenthesis, but we do need to be able to follow your code and understand it. 
 
If you have questions during the exam, raise your hand and someone will come to you.  Don’t leave your 
seat. 
 
Please wait to turn the page until everyone has their exam and you have been told to begin. 
 
Advice:  The solutions to several of the problems are quite short.  Don’t be alarmed if there is a lot more 
room on the page than you actually need for your answer. 
 
More gratuitous advice: Be sure to get to all the questions.  If you find you are spending a lot of time on 
a question, move on and try other ones, then come back to the question that was taking the time. 
 
There is an additional blank page at the end of the exam if you need more space to write an answer.  Be 
sure to indicate on the original page that the answer is continued on the last page, and be sure to 
identify the question number on that last page. 

 
 

1 / 18 

2 / 18 

3 / 16 

4 / 16 

5 / 16 

6 / 16 

Total / 100 
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Question 1. (18 points)  Suppose we have the following definitions in a Racket program: 
 
(define w '((a) b c)) 
(define x (append (car w) (cdr w))) 
(define y (list (cadr w) (cddr w))) 
(define z (list (cdr w) y (cddr x))) 
 
(a) (12 points) Draw a diagram showing the combined results of evaluating these definitions together in 
the given order in a newly reset Racket environment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) (6 points) What are the values displayed if w, x, y, and z are printed by Racket? 
 
w: 
 
x: 
 
y: 
 
z: 
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Question 2.  (18 points)  (programming with lists)  (a) (9 points) Write a Racket function concat whose 
argument is a list of lists.  The function should return a single list containing all the elements of the 
original lists.  If one of the original lists contains a nested list as an element, that nested list should be 
included in the result as a single list element.  You should not define any additional (auxiliary) functions, 
local or not, and your solution does not need to be tail-recursive.  Hint: you will likely want to use 
Racket’s null? and append functions in your code.  Examples: 

(concat '()) ⇒ '() 
(concat '((a b) (c d))) ⇒ '(a b c d) 
(concat '(() (1) (2 3) () (4))) ⇒ '(1 2 3 4) 
(concat '((() w) () (x (y) ((z))))) ⇒ '(() w x (y) ((z))) 

 (Sample solution 4 lines – you don’t need to match that, but it might give some idea of what’s possible.) 

(define (concat lst)    ;; write your code below 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(continued on next page to be sure there’s way more room than needed for answers. J ) 
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Question 2 (cont.) (b)  (9 points) Write a Racket function flatten whose argument is a list of nested 
lists.  The function should return a list with the contents of the original lists, with all inner lists collapsed 
into a sequence of non-list elements in the original order.  As before you should not define any auxiliary 
functions, but you will want to use the function concat from part (a).   Examples: 

(flatten '()) ⇒ '() 
(flatten '((a b) (c d))) ⇒ '(a b c d) 
(flatten '((() w) () (x (y) ((z))))) ⇒ '(w x y z) 
 

Hint:  You will find it helpful to use Racket’s list? and map functions in addition to concat.  (Sample 
solution 4 lines.) 

(define (flatten lst)    ;; write your code below 
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Question 3.  (16 points, 8 each)  For this question you are to give two implementations of a function 
sum-greater that returns the sum of all numbers in a list that are greater than some threshold.  For 
example, (sum-greater ‘(2 1 7 5 3 6) 4) should evaluate to 18 because that is the sum of 
the three elements of the list (7, 5, and 6) that are greater than 4.  You should assume that the list 
argument contains only numbers and that the threshold (the second argument) is also a number. 

(a) Give an implementation of sum-greater using simple recursion and without using any higher-order 
functions (i.e., no map, filter, foldl, foldr, etc.).  For full credit your solution must be tail 
recursive, and any auxiliary (helper) functions must be defined inside of sum-greater, not externally.  
(Sample solutions 7-8 lines) 

(define (sum-greater lst thresh)    ;; write your code below 

 

 

 

 

 

 

 

 

 

 

 

(b) Now give a second implementation of this function that solves the problem using higher-order 
Racket functions (map, etc.) and, if needed, using lambda to create anonymous functions, but does not 
have any conditional logic such as if or cond, and does not call any functions you have defined (even 
recursively).  Hints: don’t be intimidated by the restrictions – the solution is a fairly straightforward use 
of higher-order functions and should be much shorter than your version in part (a).  Also, recall that 
foldl combines values in a list using a given operator and identity element: (foldl op id lst) 
and is left associative.  foldr does the same but is right associative.  (Sample solution 2 lines) 

(define (sum-greater lst thresh)    ;; write your code below 
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Question 4. (16 points) Environments.  Suppose we execute the following definitions in Racket: 
 
(define data (list 2 3)) 
 

(define make-func 
  (lambda (x) 
    (let ([x 1] 
          [f (lambda (y) 
               (cons x (cons y data)))]) 
      (lambda () (f 4))))) 
 

(define func (make-func 5)) 
 
(a) (12 points)  Draw a diagram showing the bindings, environments, and closures that exist after 
evaluating the above expressions.  You should only include environments that remain bound after the 
above expressions have finished evaluating, not any other environments that existed during evaluation 
but are no longer active at the end. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) (4 points)  What result is printed by Racket if we evaluate the expression (func) after the above 
definitions have been executed?  
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Question 5.  (16 points)  Streams. Recall that we can implement a stream in Racket as a thunk (a 0-
argument function) that, when called, returns a pair whose car is the current item in the stream and 
whose cdr is a stream (thunk) that will return the next element of the stream when used appropriately. 

Write a Racket function cycle whose argument is a list pattern and that returns a stream whose 
elements repeatedly cycle through the element of pattern.  When the stream reaches the end of 
pattern it should continue from the beginning and continue cycling indefinitely.  Examples: 

(cycle ‘(a b c)) => stream representing the sequence ‘a ‘b ‘c ‘a ‘b ‘c … 
(cycle ‘(a))     => stream representing the sequence ‘a ‘a ‘a ‘a ‘a … 

You can assume that the pattern will contain at least one element.  The elements in the pattern might 
be arbitrarily complex or have any type, but that should not have any effect on your solution.  

Hint: you might find it useful to have a private auxiliary function in the stream closure that takes a 
pattern and returns an updated pattern shifted by one position, e.g., ‘(a b c d) => ‘(b c d a) 
takes.  (Sample solutions 7-10 lines) 

(define (cycle pattern)     ;; write your solution here 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
) 
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Question 6.  (16 points)  Echoes of memo-like things.  Suppose we have the following two function 
definitions, which are identical except that the order of let and lambda are reversed at the beginning 
of the function definition. 

(define max-1 
  (lambda (arg) 
    (let ([max 0]) 
      (if (< arg max) 
          max 
          (begin (set! max arg) arg))))) 
 
(define max-2 
  (let ([max 0]) 
    (lambda (arg) 
      (if (< arg max) 
          max 
          (begin (set! max arg) arg))))) 
 

(a) (8 points) Now suppose we evaluate the following expressions one after the other in the order given 
below.  Each expression is evaluated after any effects from the previous expressions(s) have occurred.  
Give the values returned by each expression as it is evaluated in sequence. 

 

(max-1 10)  => 

(max-2 20)  => 

(max-1 5)   => 

(max-2 15)  => 

 

 

 
 
 
(continued on the next page)  
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Question 6. (cont.)  (b) (8 points) Explain the results you observed in part (a).  If changing the order of 
the let and lambda expressions did not change the results computed by max-1 and max-2 in part 
(a), explain why not.  If it did make a difference, give a brief explanation of what happened.  Feel free to 
include diagrams showing environments and closures if it helps explain things, but this is not required. 
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(Additional page for answers if needed.  If you write anything here, please indicate which question it 
refers to and be sure to indicate on the original question page that the answer is continued here so the 
grader will be sure to find it.) 

 


