CSE 413 Programming Languages & Implementation

Hal Perkins
Autumn 2016
Context-Free Grammars and Parsing

The Plan

- Parsing overview
- Context free grammars
- Grammar problems ambiguity

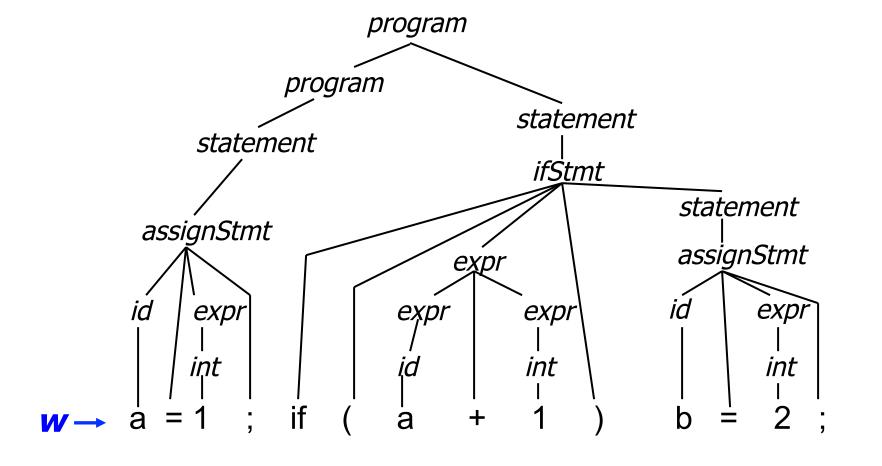
Parsing

- The syntax of most programming languages can be specified by a context-free grammar (CGF)
 - A grammar allowing recursive rules (A ::= ... A ...)
- Parsing: Given a grammar G and a sentence w in L(G), traverse the derivation (parse tree) for w in some standard order and do something useful at each node
 - The tree might not be produced explicitly, but the control flow of a parser corresponds to a traversal

Old Example

G

```
program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr;
ifStmt ::= if ( expr ) statement
expr ::= id | int | expr + expr
id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
```



"Standard Order"

- For practical reasons we want the parser to be deterministic (no backtracking), and we want to examine the source program from left to right.
 - (i.e., parse the program in linear time in the order it appears in the source file)

Common Orderings

- Top-down
 - Start with the root
 - Traverse the parse tree depth-first, left-to-right (leftmost derivation)
 - LL(k), recursive-descent
- Bottom-up
 - Start at leaves and build up to the root
 - Effectively a rightmost derivation in reverse(!)
 - LR(k) and subsets (LALR(k), SLR(k), etc.)

"Something Useful"

- At each point (node) in the traversal, perform some semantic action
 - Construct nodes of full parse tree (rare)
 - Construct abstract syntax tree (common)
 - Construct linear, lower-level representation (more common in later parts of a modern compiler)
 - Generate target code or interpret on the fly (1-pass compilers & interpreters; not common in production compilers – but works for our project)

Context-Free Grammars (review)

- Formally, a grammar G is a tuple <N,Σ,P,S> where:
 - N a finite set of non-terminal symbols
 - $-\Sigma$ a finite set of terminal symbols
 - P a finite set of productions
 - A subset of $N \times (N \cup \Sigma)^*$
 - S the start symbol, a distinguished element of N
 - If not specified otherwise, this is usually assumed to be the non-terminal on the left of the first production

Standard Notations

- a, b, c elements of Σ
- w, x, y, z elements of Σ^*
- A, B, C elements of N
- X, Y, Z elements of $N \cup \Sigma$
- α , β , γ elements of $(N \cup \Sigma)^*$
- $A\rightarrow \alpha$ or $A := \alpha$ if A, $\alpha > in P$

Derivation Relations (1)

- $\alpha A \gamma => \alpha \beta \gamma$ iff $A := \beta$ in P
 - derives
- A =>* w if there is a chain of productions starting with A that generates w
 - transitive closure

Derivation Relations (2)

- $W A \gamma =>_{lm} W \beta \gamma$ iff $A ::= \beta$ in P
 - derives leftmost
- $\alpha A w =>_{rm} \alpha \beta w$ iff $A ::= \beta$ in P
 - derives rightmost
- Parsers normally deal with only leftmost or rightmost derivations – not random orderings

Languages

- For A in N, $L(A) = \{ w \mid A = >^* w \}$
 - i.e., set of strings (words, terminal symbols)
 generated by nonterminal A
- If S is the start symbol of grammar G, we define L(G) = L(S)

Reduced Grammars

Grammar G is reduced iff for every production
 A ::= α in G there is some derivation

$$S =>^* x A z => x \alpha z =>^* xyz$$

- i.e., no production is useless
- Convention: we will use only reduced grammars

Example

```
program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr;
ifStmt ::= if ( expr ) stmt
expr ::= id | int | expr + expr
id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
```

Top down, Leftmost derivation for: a = 1 + b;

Example

Grammar

S ::= a*AB*e

 $A := Abc \mid b$

B := d

 Top down, leftmost derivation of: abbcde

Ambiguity

- Grammar G is unambiguous iff every w in L(G) has a unique leftmost (or rightmost) derivation
 - Fact: either unique leftmost or unique rightmost implies the other
- A grammar without this property is ambiguous
 - Other grammars that generate the same language might be unambiguous
- We need unambiguous grammars for parsing

Example: Ambiguous Grammar for Arithmetic Expressions

```
expr ::= expr + expr | expr - expr
| expr * expr | expr / expr | int
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
```

- Exercise: show that this is ambiguous
 - How? Show two different leftmost or rightmost derivations for the same string
 - Equivalently: show two different parse trees for the same string

expr ::=
$$expr + expr | expr - expr$$

 $| expr * expr | expr | expr | int$
 $int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$

Give a leftmost derivation of 2+3*4 and show the parse tree

expr ::=
$$expr + expr | expr - expr$$

 $| expr^* expr | expr | expr | int$
 $| expr^* expr | expr | expr | int$
 $| expr^* expr | expr | expr | expr | int$

Give a different leftmost derivation of 2+3*4 and show the parse tree

Give two different derivations of 5+6+7

What's going on here?

- This grammar has no notion of precedence or associatively
- Standard solution
 - Create a non-terminal for each level of precedence
 - Isolate the corresponding part of the grammar
 - Force the parser to recognize higher precedence subexpressions first

Classic Expression Grammar

```
expr ::= expr + term | expr - term | term
term ::= term * factor | term / factor | factor
factor ::= int | ( expr )
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
```

Check: Derive 2+3*4

```
expr ::= expr + term | expr - term | term
term ::= term * factor | term / factor | factor
factor ::= int | (expr)
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
```

Check: Derive 5+6+7

```
expr ::= expr + term | expr - term | term
term ::= term * factor | term / factor | factor
factor ::= int | ( expr )
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
```

 Note interaction between left- vs right-recursive rules and resulting associativity

Check: Derive 5+(6+7)

```
expr ::= expr + term | expr - term | term
term ::= term * factor | term / factor | factor
factor ::= int | ( expr )
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
```

Another Classic Example

Grammar for conditional statements

- Exercise: show that this is ambiguous
 - How?

One Derivation

```
if ( cond ) if ( cond ) stmt else stmt
```

```
stmt ::= if ( cond ) stmt
| if ( cond ) stmt else stmt
Another Derivation | assign
```

if (cond) if (cond) stmt else stmt

Solving if Ambiguity

- Fix the grammar to separate if statements with else from if statements with no else
 - Done in original Java reference grammar
 - Adds lots of non-terminals
 - Need productions for things like "while statement that contains an unmatched if" and "while statement with only matched ifs", etc. etc. etc.
- Use some ad-hoc rule in parser
 - "else matches closest unpaired if"

Parser Tools and Operators

- Most parser tools can cope with ambiguous grammars
 - Makes life simpler if used with discipline
- Typically one can specify operator precedence & associativity
 - Allows simpler, ambiguous grammar with fewer nonterminals as basis for generated parser, without creating problems

Parser Tools and Ambiguous Grammars

- Possible rules for resolving other problems
 - Earlier productions in the grammar preferred to later ones
 - Longest match used if there is a choice
- Parser tools normally allow for this
 - But be sure that what the tool does is really what you want
 - (Order in the input is particularly error-prone reordering the input lines can change the meaning! (3)

Or...

• If the parser is hand-written, either fudge the grammar or the parser, or cheat where it helps.

to be continued...