
CSE 413
Programming Languages &
Implementation

Hal Perkins
Autumn 2016

Introduction to Ruby
(adapted from CSE 341, Dan Grossman)

1 CSE413 Fall 2016

The Plan

•  Why Ruby?
•  Some basics of Ruby programs

–  Syntax
–  Classes, methods
–  Fields, variables, scope
–  Dynamic typing

•  We won’t cover all (or most) of the details in class
•  Focus on OO, dynamic typing, blocks, mixins
•  References: online library docs +

–  Thomas Programming Ruby (3rd or 4th eds, v1.9-2.0,
chs. 1-10; 1st ed online, ch 1-8)

•  Electronic copies available ($) from publisher

2 CSE413 Fall 2016

Logistics

•  We’ll use version 2.x for some recent x
–  Ruby 1.9 was similar and probably won’t differ for us
–  Ruby 1.8 and earlier have same core ideas but some

differences
–  REPL (irb) + full Ruby

•  Installation instructions, etc. on course web:
–  Windows: use “one click installer”
–  OS X: Recent OS X should have it already (run irb in a

terminal window to see if it’s there); if not, get
command-line tools and install

•  Use homebrew for newer if don’t have 2.0 or later
–  Linux: use your favorite package manager

3 CSE413 Fall 2016

Why?

•  Because:
–  Pure object-oriented language

•  Interesting, not entirely obvious implications
–  Interesting design decisions

•  Type system, mixins, syntax (“friendly”), etc.
•  Also interesting, but we’re skipping: RAILS web

framework
–  Major reason for industry interest in Ruby, but no

time to cover (would take a month)
–  But you should be able to pick it up after 413

CSE413 Fall 2016 4

Where Ruby fits

•  Design choices for O-O and functional languages

•  Dynamic typed OO helps isolate OO’s essence
without details of type system

•  Historical note: Smalltalk
–  Classic dynamically typed, class-based, pure OO
–  Ruby takes much from this tradition

dynamically typed statically typed

functional Scheme/Racket Haskell, ML (not in 413)

object-oriented Ruby Java

5 CSE413 Fall 2016

Rules for class-based OOP (in Ruby)

1.  All values are references to objects
2.  Objects communicate via method calls, also known as

messages
3.  Each object has its own (private) state
4.  Every object is the instance of a class
5.  An object’s class determines the object’s behavior

–  How it handles method calls (responds to messages)
–  Class contains method definitions

Java/C#/etc. similar but do not follow (1) (e.g., numbers,
null), and allow objects to have non-private state.

6 CSE413 Fall 2016

Ruby key ideas (1)

•  Everything is an object (with constructor, fields,
methods); even numbers, even classes(!)

•  Class based: every object has a class, which
determines how it responds to messages
–  Like Java, not like Javascript

•  Dynamic typing
–  vs static typing in Java

•  Convenient reflection (runtime inspection of objects)
•  Dynamic dispatch (like Java)
•  Sends to self (same as this in Java)

7 CSE413 Fall 2016

Ruby Key Ideas (2)

•  Everything is “dynamic”
–  Evaluation can add/remove classes, add/remove

methods, add/remove fields, etc.
•  Blocks and libraries encourage use of closure idioms
•  mixins: interesting modularity feature (not like Java

interfaces or C++ multiple inheritance)
•  Syntax and scoping rules of a “scripting language”

–  Often many ways to say something – “why not” attitude
–  Variables “spring to life” on first use
–  Some interesting (odd?) scoping rules

•  And a few C/Java-like features (loops, return, etc.)
–  Rarely need loops because of blocks, iterators

8 CSE413 Fall 2016

Defining a class

(download full definition from course web)

class Rat =
 # no instance variable (field) declarations
 # just assign to @foo to create field foo
 def initialize (num, den=1)
 …
 @num = num
 @den = den
 end

 def print … end
 def add r … edn
end

9 CSE413 Fall 2016

Using a class (1)

•  ClassName.new(args) creates a new instance of
ClassName and calls its initialize method with
args

•  Every variable references an object (possibly the nil
object – and nil really is an object)
–  Local variables (in a method) foo
–  Instance variables (fields) @foo
–  Class variables (static fields) @@foo
–  Global variables and constants $foo $MAX

10 CSE413 Fall 2016

Using a class (2)

•  You use an object with a method call
–  Also known as message send
–  Object’s class determines its behavior

•  Examples: x.m 4 x.m1.m2(y.m3) -42.abs
–  m and m(…) are syntactic sugar for self.m and
self.m(…)

–  e1+e2 is sugar for e1.+(e2) (yup, really!!!)

11 CSE413 Fall 2016

No Variable Declarations

•  If you assign to a variable, it’s mutation
•  If the variable is not in scope, it is created(!) (Do not

mispeal things!!)
–  Scope of new variable is the method you are in

•  Same with fields: if you assign to a field, that object
has that field
–  So different objects of the same class can have

different fields(!)
•  Fewer keystrokes in programs, “cuts down on typing”,

but compiler catches fewer bugs
–  A hallmark of “scripting languages”

12 CSE413 Fall 2016

Protection?

•  Fields are inaccessible outside (individual) instances
–  All instance variables are private
–  Define getter/setter methods as needed

•  Methods are public, protected, private
–  public is the default
–  protected: only callable from class or subclass

object
–  private: only callable from self
–  protected & private differ from Java (how?)

13 CSE413 Fall 2016

Getters and setters

•  If you want outside access, must define methods
 def foo def foo= x
 @foo @foo = x
 end end

•  The foo= convention allows sugar via extra spaces
 x.foo x.foo = 42

•  Shorter syntax for defining getters/setters
 attr_reader :foo attr_writer :foo
•  Overall, requiring getters/setters is more uniform, OO

–  Can change methods later without changing
clients

14 CSE413 Fall 2016

Class definitions are dynamic

•  All definitions in Ruby are dynamic
•  Example: Any code can add or remove methods on

existing classes
–  Very occasionally useful (or cute) to add your own

method to an existing class that is then visible to
all instances of that class

•  Changing a class affects all instances – even if
already created
–  Disastrous example: changing Fixnum’s + method

•  Overall: a simple language where everything can be
changed and method lookup uses instance’s classes

15 CSE413 Fall 2016

Unusual syntax
(add to this list as you discover things)

•  Newlines often matter – example: don’t need semi-
colon if a statement ends a line

•  Message sends (function calls) with 0 or 1 arguments
often don’t need parentheses

•  Infix operations like + are just message sends
•  Can define operators including = []
•  Conditional expressions e1 if e2 and similar things

(as well is if e1 then e2)

16 CSE413 Fall 2016

Unusual syntax
(add to this list as you discover things)

•  Classes don’t need to be defined in one place
(similar to C#, not Java or C++)

•  Class names must be capitalized
•  self is Java’s “this”
•  Loops, conditionals, classes, methods are self-

bracketing (end with end)
–  Actually not unusual except for programmers with

too much exposure to C/Java/C#/C++ and other
languages of the curly brace persuasion

17 CSE413 Fall 2016

A bit about Expressions

•  Everything is an expression and produces a value
•  nil means “nothing”, but it is an object (an instance

of class NilClass)
•  nil and false are false in a boolean context;

everything else is true (including 0)
•  ‘strings’ are taken literally (almost)
•  “strings” allow more substitutions

–  including #{expressions}
–  (Elaborate regular expression package. Won’t

cover in class but learn/use as needed.)

18 CSE413 Fall 2016

Top-level

•  Expressions at top-level are evaluated in the context
of an implicit “main” object with class Object
–  That is how a standalone program can “get

started” rather than requiring creating an object
and calling a method (particularly useful in irb)

•  Top-level methods are added to Object, which
makes them available everywhere

•  irb: Ruby REPL/interpreter
–  Use load “filename.rb” to read code from file

19 CSE413 Fall 2016

