
CSE	413	Final	Exam,	December	12,	2016	 Page	1	of	11	

CSE	413	Final	Exam	

December	12,	2016	
	

Name	______________________________________	
	
	

The	exam	is	closed	book,	closed	notes,	no	electronic	devices,	signal	flags,	tin-can	telephones,	implants,	
or	other	signaling	or	communications	apparatus.	
	
Style	and	indenting	matter,	within	limits.		We’re	not	overly	picky	about	details,	but	we	do	need	to	be	
able	to	follow	your	code	and	understand	it.	
	
Please	wait	to	turn	the	page	until	everyone	has	their	exam	and	you	have	been	told	to	begin.		If	you	have	
questions	during	the	exam,	raise	your	hand	and	someone	will	come	to	you.		Don’t	leave	your	seat.	
	
Advice:		The	solutions	to	many	of	the	problems	are	short.		Don’t	be	alarmed	if	there	is	a	lot	more	room	
on	the	page	than	you	actually	need	for	your	answer.	
	
More	gratuitous	advice:	Be	sure	to	get	to	all	the	questions.		If	you	find	you	are	spending	a	lot	of	time	on	
a	question,	move	on	and	try	other	ones,	then	come	back	to	the	question	that	was	taking	the	time.	

	

1	 /	18	

2	 /	12	

3	 /	16	

4	 /	12	

5	 /	10	

6	 /	12	

7	 /	8	

8	 /	6	

9	 /	6	

Total	 /	100	

	
	

CSE	413	Final	Exam,	December	12,	2016	 Page	2	of	11	

Question	1.	(18	points)		Regular	expressions.		For	each	of	the	following,	(i)	give	a	regular	expression	that	
generates	the	set	of	strings	described,	and	(ii)	draw	a	DFA	that	accepts	that	set	of	strings.		There	is	lots	
of	blank	space	for	your	answers	–	don’t	worry	if	you	don’t	need	nearly	this	much	room.	

Fine	print:		You	may	use	basic	regular	expressions	(sequences	rs,	choice	r|s,	repetition	r*,	and	parentheses	for	
grouping).		You	may	also	use	+	(one	or	more)	and	?	(zero	or	one),	and	character	classes	like	[ax-z]	and	[^abc].	You	
also	may	use	named	abbreviations	like	“vowels	::=	[aeiou]”	if	these	help.		You	may	not	use	additional	regular	
expression	operators	that	might	be	found	in	various	programming	language	libraries	or	software	tools.	

(a)	(6	points)	A	valid	CSE	course	number	like	CSE413	consists	of	the	letters	‘CSE’	followed	by	exactly	3	
digits.		The	first	digit	of	the	number	must	be	a	decimal	number	in	the	range	1-6;	the	remaining	numbers	
can	be	any	decimal	number	in	the	range	0-9.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

(continued	on	next	page)	

	 	

CSE	413	Final	Exam,	December	12,	2016	 Page	3	of	11	

Question	1.	(cont.)	As	with	part	(a),	(i)	give	a	valid	regular	expression	and	(ii)	DFA	to	recognize	this	set	of	
strings.	

(b)	(12	points)	An	ISO-8601	date	has	the	format	YYYY-MM-DD,	where	YYYY	are	the	characters	of	a	4-digit	
year	(0000	to	9999),	MM	are	the	two	characters	of	the	month	in	the	range	01	to	12,	and	DD	are	the	two	
characters	of	the	day	in	the	range	01	to	31.		(For	example,	the	date	of	this	exam	is	2016-12-12,	and	
tomorrow	will	be	2016-12-13.)		You	do	not	need	to	worry	about	restricting	dates	to	smaller	ranges	
based	on	the	month.		For	example,	if	the	month	is	02,	the	actual	date	will	be	no	greater	than	29,	but	you	
do	not	need	to	account	for	that.		But	you	should	be	sure	that	no	month	is	greater	than	12	and	no	day	is	
greater	than	31.

CSE	413	Final	Exam,	December	12,	2016	 Page	4	of	11	

Question	2.		(12	points)	Consider	the	following	grammar:	

	 S	::=	(S)S		|		ε		

(Recall	that	ε	is	the	empty	string.)	

(a)	(8	points)	Draw	the	parse	tree	for	(())()			

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

(b)	(4	points)	Describe	in	English	the	set	of	strings	generated	by	this	grammar.	

	

	 	

CSE	413	Final	Exam,	December	12,	2016	 Page	5	of	11	

Question	3.	(16	points)		Ruby	programming.		Write	a	Ruby	program	that	reads	text	from	standard	input	
and,	after	reading	the	entire	input,	prints	all	of	the	words	that	occur	more	than	once	in	the	input.		Each	
word	that	is	printed	should	be	printed	exactly	once,	but	the	order	in	which	the	words	are	printed	is	not	
specified.		Each	word	should	be	printed	on	a	separate	line.			For	example,	if	the	input	is:	

	 how	now	brown	cow	
	 don’t	have	a	cow	
	 the	cow	jumped	over	the	moon	

then	the	output	should	consist	of	the	words	“cow”	and	“the”,	since	they	are	the	only	words	that	occur	
more	than	once	in	the	input.	

You	should	assume	that	words	are	any	non-blank	sequences	of	characters	in	an	input	line	that	are	
separated	by	one	or	more	blanks.		Upper-	and	lower-case	characters	(‘A’	and	‘a’)	are	different	–	you	
should	not	convert	or	transform	the	input	characters.		There	might,	or	might	not,	be	leading	or	trailing	
blanks	at	the	beginning	or	end	of	a	line.	

For	full	credit	you	should	use	Ruby	iterators	like	each	to	process	the	contents	of	any	containers	like	
arrays	or	hashes.			Your	solution	should	process	the	input	in	linear	time	–	i.e.,	a	solution	that	reads	all	of	
the	words	into	a	giant	string	and	then	compares	every	word	to	every	other,	which	takes	O(n2)	time,	
would	not	receive	full	credit.		You	also	should	avoid	reading	and	storing	the	entire	input	file	before	
processing	it	–	process	each	line	of	input	as	you	read	it.	

A	couple	of	possibly	useful	facts	about	strings:	

• If	s	is	a	string,	s.length	is	the	number	of	characters	in	it.	
• If	s	is	a	string,	s.trim	is	a	copy	of	s	with	any	leading	or	trailing	blanks	omitted.	
• The	string	split	method	returns	an	array	of	the	words	in	a	string.		Example:	

“one two three”.split	returns	[“one”, “two”, “three”].		If	the	entire	string	
consists	of	blanks	or	has	no	characters	in	it,	split	will	return	an	empty	array	[].	

Write	your	code	below	or	on	the	next	page.	
	
	 	

CSE	413	Final	Exam,	December	12,	2016	 Page	6	of	11	

Question	3.	(cont.)		Additional	space	for	your	Ruby	code,	if	needed.	
	
	
	
	 	

CSE	413	Final	Exam,	December	12,	2016	 Page	7	of	11	

Question	4.	(12	points)	Ruby	inheritance	and	mixins.		Consider	the	following	code	that	consists	of	four	
Ruby	classes	and	an	additional	“mixin”	module.		(Recall	that	if	we	“include”	a	mixin	module	in	a	class,	it	
incorporates	the	methods	from	the	module	in	the	current	class.)	
	
class	Apple	
		def	m1	
				puts	"A-a"	
		end	
		def	m2	
				puts	"A-aa"	
				self.m1()	
		end	
end	
	
module	Mango	
		def	m1	
				puts	"M-m"	
		end	
		def	m3	
				self.m1()	
		end	
end	
	

class	Banana	<	Apple	
		include	Mango	
		def	m4	
				puts	"B-b"	
		end	
end	 	
	
class	Citrus	<	Apple	
		def	m2	
				super	
				puts	"C-cc"	
		end	
end	
	

class	Durian	<	Banana	
		include	Mango	
		def	m2	
				puts	"D-d"	
				m3()	
		end	
		def	m4	
				super	
		end	
end	

For	each	of	the	following,	write	down	the	output	produced	by	executing	that	line	of	code,	or,	if	an	error	
occurs,	explain	what	happens.	
	

a) Apple.new.m1

b) Banana.new.m2

c) Citrus.new.m1

d) Citrus.new.m2

e) Citrus.new.m3

f) Durian.new.m4

	 	

CSE	413	Final	Exam,	December	12,	2016	 Page	8	of	11	

The	next	few	questions	concern	the	calculator	language	from	the	last	two	assignments.		If	you	recall,	the	
grammar	for	the	calculator	language	was	as	follows:	

program	::=	statement	|	program	statement	
statement	::=	exp	|	id	=	exp	|	clear	id	|	list	|	quit	|	exit	
exp	::=	term		|		exp	+	term		|			exp	-	term	
term	::=	power		|		term	*	power	|	term	/	power	
power	::=	factor		|		factor	**	power		
factor	::=	id		|		number		|		(exp)	|	sqrt	(exp)	

We	would	like	to	add	relational	operators	to	the	language.		The	idea	is	that	an	operator	like	<	compares	
the	values	of	two	expressions	and	evaluates	to	the	value	1	if	the	relation	is	true	or	the	value	0	if	it	is	
false.		So,	for	instance,	3<4	evaluates	to	1,	while	1<0	evaluates	to	0.	

Relational	operators	should	have	lower	precedence	than	any	of	the	other	arithmetic	operators.		So	
2+1<2	means	the	same	as	(2+1)<2,	which	evaluates	to	0.		Relational	operators	are	left	associative	
binary	operators	just	like	+,	and	-,	so	3<1<2	is	interpreted	as	(3<1)<2,	which	evaluates	to	0<2	or	1.	

The	rest	of	the	calculator	language	remains	the	same,	with	numeric	constants	and	variables;	expressions	
involving	+,	-,	*,	/,	**,	and	parentheses;	the	sqrt	function;	assignment	statements	id	= exp;	and	the	
keywords	clear,	list,	quit,	and	exit.		(Most	of	this	information	about	the	existing	calculator	
language	is	not	needed	to	answer	the	following	questions.)	

	

Question	5.	(10	points)		Suppose	that	we	have	added	to	the	language	the	full	set	of	six	relational	
operators:	<,	<=,	==,	!=,	>=	and	>.		After	these	changes	to	the	language,	consider	the	following	input:	

	

	 x v i i 	 	 = 17 	

	 c l e a r 	 	 a < ==>b< ! =1+0>>2p l u s 3 	

	 s q r t (1 <2) >=3===e x i t 4 2 	
	

Show	how	the	calculator	scanner	would	divide	these	input	characters	into	tokens	by	drawing	a	box	
around	each	sequence	of	characters	that	make	up	a	single	token.		Boxes	on	the	first	line	are	drawn	for	
you.		You	do	not	need	to	show	any	“end	of	line”	or	“end	of	file”	tokens.		(Remember	that	we’re	only	
asking	how	the	scanner	would	divide	the	input	characters	into	tokens,	not	whether	the	resulting	token	
sequence	makes	any	sense	or	is	a	legal	calculator	program.)	

CSE	413	Final	Exam,	December	12,	2016	 Page	9	of	11	

Question	6.		(12	points)		We	need	to	add	the	relational	operators	to	the	grammar.		To	keep	things	
simple	for	this	question,	we	will	only	deal	with	the	<	operator.		The	others	would	all	be	handled	
similarly,	but	handling	only	<	is	enough	here.	

In	an	attempt	to	add	<	to	the	language	of	expressions,	one	of	our	summer	interns	modified	the	rule	for	
exp	as	follows:	

exp	::=	term		|		exp	+	term		|			exp	–	term	|		exp	<	exp		

(a)		(6	points)	Show	that	this	grammar	is	ambiguous.	

	

	

	

	

	

	

	

	

	

	

	

(b)	(6	points)		Give	a	different	grammar	that	will	add	the	<	operator	to	expressions	but	that	is	
unambiguous,	gives	<	lower	precedence	than	the	other	arithmetic	operators,	and	ensures	that	<	is	left-
associative.		You	only	need	to	rewrite	or	add	the	rules	(productions)	needed	to	make	this	change	–	you	
do	not	need	to	copy	down	other	rules	that	remain	unchanged.	

	

	 	

CSE	413	Final	Exam,	December	12,	2016	 Page	10	of	11	

Some	short	questions	on	memory	management.	

Question	7.	(8	points)	Two	of	the	strategies	we	looked	at	for	reclaiming	memory	automatically	were	
reference	counting	and	mark-sweep	garbage	collection.		A	claim	made	in	class	was	that	reference	
counting	did	not	always	do	as	complete	a	job	as	garbage	collection	in	reclaiming	unreachable	(not-in-
use)	memory.	

Give	an	example	of	a	dynamically	allocated	data	structure	that	would	not	be	reclaimed	by	a	memory	
manager	using	reference	counting,	but	would	be	successfully	reclaimed	by	a	mark-sweep	collector.		Give	
a	brief	and	to-the-point	explanation	of	why	this	is	the	case.	

(You	won’t	need	all	of	the	space	below,	but	you	will	probably	find	it	useful	to	draw	a	small	diagram	or	
two	to	illustrate	your	answer.)	

	 	

CSE	413	Final	Exam,	December	12,	2016	 Page	11	of	11	

Question	8.	(6	points)		In	traditional	languages	like	C	or	Java,	the	automatic	storage	used	for	function	
(method)	local	variables	is	allocated	on	a	stack.		That	makes	it	efficient	to	allocate	storage	when	a	
function	is	called	and	release	it	quickly	when	the	function	exits.		The	question	is,	can	this	always	be	done	
for	a	functional	language	like	Racket?		Why	or	why	not?		If	it	cannot	be	done,	what	needs	to	be	done	
instead?		(It	should	be	possible	to	answer	this	in	a	couple	of	sentences.)	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Question	9.	(6	points)		A	generational	garbage	collector	performs	frequent	garbage	collection	on	part	of	
the	heap,	but	does	not	collect	the	entire	heap	nearly	as	often.		Explain	why	this	is	done	in	a	couple	of	
sentences:	which	part	of	the	heap	is	collected	frequently	and	what	does	it	contain?	And	why	is	this	an	
effective	strategy?	
	
	
	
	
	
	
	

	

	

	

	

	

	

Have a great winter break and best wishes for the new year!
The CSE 413 staff

