
CSE	413	16au	Final	Exam	Sample	Solution	

CSE	413	Final	Exam,	December	12,	2016	 Page	1	of	8	

Question	1.	(18	points)		Regular	expressions.		For	each	of	the	following,	(i)	give	a	regular	expression	that	
generates	the	set	of	strings	described,	and	(ii)	draw	a	DFA	that	accepts	that	set	of	strings.		There	is	lots	
of	blank	space	for	your	answers	–	don’t	worry	if	you	don’t	need	nearly	this	much	room.	

Fine	print:		You	may	use	basic	regular	expressions	(sequences	rs,	choice	r|s,	repetition	r*,	and	parentheses	for	
grouping).		You	may	also	use	+	(one	or	more)	and	?	(zero	or	one),	and	character	classes	like	[ax-z]	and	[^abc].	You	
also	may	use	named	abbreviations	like	“vowels	::=	[aeiou]”	if	these	help.		You	may	not	use	additional	regular	
expression	operators	that	might	be	found	in	various	programming	language	libraries	or	software	tools.	

(a)	(6	points)	A	valid	CSE	course	number	like	CSE413	consists	of	the	letters	‘CSE’	followed	by	exactly	3	
digits.		The	first	digit	of	the	number	must	be	a	decimal	number	in	the	range	1-6;	the	remaining	numbers	
can	be	any	decimal	number	in	the	range	0-9.	

	 C	S	E	[1-6]	[0-9]	[0-9]	

	

	

	
	

	

(b)	(12	points)	An	ISO-8601	date	has	the	format	YYYY-MM-DD,	where	YYYY	are	the	characters	of	a	4-digit	
year	(0000	to	9999),	MM	are	the	two	characters	of	the	month	in	the	range	01	to	12,	and	DD	are	the	two	
characters	of	the	day	in	the	range	01	to	31.		(For	example,	the	date	of	this	exam	is	2016-12-12,	and	
tomorrow	will	be	2016-12-13.)		You	do	not	need	to	worry	about	restricting	dates	to	smaller	ranges	
based	on	the	month.		For	example,	if	the	month	is	02,	the	actual	date	will	be	no	greater	than	29,	but	you	
do	not	need	to	account	for	that.		But	you	should	be	sure	that	no	month	is	greater	than	12	and	no	day	is	
greater	than	31.	

	 [0-9]	[0-9]	[0-9]	[0-9]	–	(0[1-9]	|	1[0-2])	–	(0[1-9]	|	[12][0-9]	|	3[01])	

	

	

	

	

	
	

	
	

	
	

	
	

	
	

	
	

	
	
	
	

[0-9]	 [0-9]	 [0-9]	 [0-9]	

[1-9]	

[0-9]	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

0	

1	

0	

3	

[12]	

[01]	[0-2]	

[1-9]	
–	

–	

	
	

	
	

	
	

	
	

	
	

	
	

	
	
	
	

C	 S	 E	 [1-6]	 [0-9]	 [0-9]	

CSE	413	16au	Final	Exam	Sample	Solution	

CSE	413	Final	Exam,	December	12,	2016	 Page	2	of	8	

Question	2.		(12	points)	Consider	the	following	grammar:	

	 S	::=	(S)S		|		ε		

(Recall	that	ε	is	the	empty	string.)	

(a)	(8	points)	Draw	the	parse	tree	for	(())()			

	

	

	

	

	

	

	

(b)	(4	points)	Describe	in	English	the	set	of	strings	generated	by	this	grammar.	

All	strings	with	sequences	of	nested	sets	of	balanced	parentheses,	including	the	empty	string.	

	

	 	

()	

S	

S	

ε

()	

S	

S	

ε

S	

ε

()	

S	

S	

ε

CSE	413	16au	Final	Exam	Sample	Solution	

CSE	413	Final	Exam,	December	12,	2016	 Page	3	of	8	

Question	3.	(16	points)		Ruby	programming.		Write	a	Ruby	program	that	reads	text	from	standard	input	
and,	after	reading	the	entire	input,	prints	all	of	the	words	that	occur	more	than	once	in	the	input.		Each	
word	that	is	printed	should	be	printed	exactly	once,	but	the	order	in	which	the	words	are	printed	is	not	
specified.		Each	word	should	be	printed	on	a	separate	line.			For	example,	if	the	input	is:	

	 how	now	brown	cow	
	 don’t	have	a	cow	
	 the	cow	jumped	over	the	moon	

then	the	output	should	consist	of	the	words	“cow”	and	“the”,	since	they	are	the	only	words	that	occur	
more	than	once	in	the	input.	

You	should	assume	that	words	are	any	non-blank	sequences	of	characters	in	an	input	line	that	are	
separated	by	one	or	more	blanks.		Upper-	and	lower-case	characters	(‘A’	and	‘a’)	are	different	–	you	
should	not	convert	or	transform	the	input	characters.		There	might,	or	might	not,	be	leading	or	trailing	
blanks	at	the	beginning	or	end	of	a	line.	

For	full	credit	you	should	use	Ruby	iterators	like	each	to	process	the	contents	of	any	containers	like	
arrays	or	hashes.			Your	solution	should	process	the	input	in	linear	time	–	i.e.,	a	solution	that	reads	all	of	
the	words	into	a	giant	string	and	then	compares	every	word	to	every	other,	which	takes	O(n2)	time,	
would	not	receive	full	credit.		You	also	should	avoid	reading	and	storing	the	entire	input	file	before	
processing	it	–	process	each	line	of	input	as	you	read	it.	

A	couple	of	possibly	useful	facts	about	strings:	

• If	s	is	a	string,	s.length	is	the	number	of	characters	in	it.	
• If	s	is	a	string,	s.trim	is	a	copy	of	s	with	any	leading	or	trailing	blanks	omitted.	
• The	string	split	method	returns	an	array	of	the	words	in	a	string.		Example:	

“one two three”.split	returns	[“one”, “two”, “three”].		If	the	entire	string	
consists	of	blanks	or	has	no	characters	in	it,	split	will	return	an	empty	array	[].	

Write	your	code	below	or	on	the	next	page.	
	
	
(See	solution	on	next	page)	 	

CSE	413	16au	Final	Exam	Sample	Solution	

CSE	413	Final	Exam,	December	12,	2016	 Page	4	of	8	

Question	3.	(cont.)		Additional	space	for	your	Ruby	code,	if	needed.	
	
There	are,	of	course,	many	ways	to	solve	the	problem.		This	solution	simply	counts	the	number	of	
occurrences	of	each	distinct	word,	then	loops	through	the	table	and	prints	ever	word	with	a	count	
greater	than	one.	
	
	
	
freq = { } # {word=>frequency} pairs (Hash.new also works)

read input and count number of occurrences of each word read

while line = gets

 words = line.split

 words.each do | w | # blocks with { } are also ok if done right

 if freq[w]

 freq[w] += 1

 else

 freq[w] = 1

 end

 end

end

go through the table and print all words that occur more than once

freq.each do | word, n |

 if n > 1

 puts word

 end

end

	
	 	

CSE	413	16au	Final	Exam	Sample	Solution	

CSE	413	Final	Exam,	December	12,	2016	 Page	5	of	8	

Question	4.	(12	points)	Ruby	inheritance	and	mixins.		Consider	the	following	code	that	consists	of	four	
Ruby	classes	and	an	additional	“mixin”	module.		(Recall	that	if	we	“include”	a	mixin	module	in	a	class,	it	
incorporates	the	methods	from	the	module	in	the	current	class.)	
	
class	Apple	
		def	m1	
				puts	"A-a"	
		end	
		def	m2	
				puts	"A-aa"	
				self.m1()	
		end	
end	
	
module	Mango	
		def	m1	
				puts	"M-m"	
		end	
		def	m3	
				self.m1()	
		end	
end	
	

class	Banana	<	Apple	
		include	Mango	
		def	m4	
				puts	"B-b"	
		end	
end		
	
class	Citrus	<	Apple	
		def	m2	
				super	
				puts	"C-cc"	
		end	
end	
	

class	Durian	<	Banana	
		include	Mango	
		def	m2	
				puts	"D-d"	
				m3()	
		end	
		def	m4	
				super	
		end	
end	

For	each	of	the	following,	write	down	the	output	produced	by	executing	that	line	of	code,	or,	if	an	error	
occurs,	explain	what	happens.	
	

a) Apple.new.m1

A-a

b) Banana.new.m2

A-aa

M-m

c) Citrus.new.m1

A-a

d) Citrus.new.m2

A-aa

A-a

C-cc

e) Citrus.new.m3

undefined method ‘m3’

f) Durian.new.m4

B-b

	 	

CSE	413	16au	Final	Exam	Sample	Solution	

CSE	413	Final	Exam,	December	12,	2016	 Page	6	of	8	

The	next	few	questions	concern	the	calculator	language	from	the	last	two	assignments.		If	you	recall,	the	
grammar	for	the	calculator	language	was	as	follows:	

program	::=	statement	|	program	statement	
statement	::=	exp	|	id	=	exp	|	clear	id	|	list	|	quit	|	exit	
exp	::=	term		|		exp	+	term		|			exp	-	term	
term	::=	power		|		term	*	power	|	term	/	power	
power	::=	factor		|		factor	**	power		
factor	::=	id		|		number		|		(exp)	|	sqrt	(exp)	

We	would	like	to	add	relational	operators	to	the	language.		The	idea	is	that	an	operator	like	<	compares	
the	values	of	two	expressions	and	evaluates	to	the	value	1	if	the	relation	is	true	or	the	value	0	if	it	is	
false.		So,	for	instance,	3<4	evaluates	to	1,	while	1<0	evaluates	to	0.	

Relational	operators	should	have	lower	precedence	than	any	of	the	other	arithmetic	operators.		So	
2+1<2	means	the	same	as	(2+1)<2,	which	evaluates	to	0.		Relational	operators	are	left	associative	
binary	operators	just	like	+,	and	-,	so	3<1<2	is	interpreted	as	(3<1)<2,	which	evaluates	to	0<2	or	1.	

The	rest	of	the	calculator	language	remains	the	same,	with	numeric	constants	and	variables;	expressions	
involving	+,	-,	*,	/,	**,	and	parentheses;	the	sqrt	function;	assignment	statements	id	= exp;	and	the	
keywords	clear,	list,	quit,	and	exit.		(Most	of	this	information	about	the	existing	calculator	
language	is	not	needed	to	answer	the	following	questions.)	

	

Question	5.	(10	points)		Suppose	that	we	have	added	to	the	language	the	full	set	of	six	relational	
operators:	<,	<=,	==,	!=,	>=	and	>.		After	these	changes	to	the	language,	consider	the	following	input:	

	 x v i i 	 	 = 17 	

	 c l e a r 	 	 a < ==>b< ! =1+0>>2p l u s 3 	

	 s q r t (1 <2) >=3===e x i t 4 2 	
	

Show	how	the	calculator	scanner	would	divide	these	input	characters	into	tokens	by	drawing	a	box	
around	each	sequence	of	characters	that	make	up	a	single	token.		Boxes	on	the	first	line	are	drawn	for	
you.		You	do	not	need	to	show	any	“end	of	line”	or	“end	of	file”	tokens.		(Remember	that	we’re	only	
asking	how	the	scanner	would	divide	the	input	characters	into	tokens,	not	whether	the	resulting	token	
sequence	makes	any	sense	or	is	a	legal	calculator	program.)	

CSE	413	16au	Final	Exam	Sample	Solution	

CSE	413	Final	Exam,	December	12,	2016	 Page	7	of	8	

Question	6.		(12	points)		We	need	to	add	the	relational	operators	to	the	grammar.		To	keep	things	
simple	for	this	question,	we	will	only	deal	with	the	<	operator.		The	others	would	all	be	handled	
similarly,	but	handling	only	<	is	enough	here.	

In	an	attempt	to	add	<	to	the	language	of	expressions,	one	of	our	summer	interns	modified	the	rule	for	
exp	as	follows:	

exp	::=	term		|		exp	+	term		|			exp	–	term	|		exp	<	exp		

(a)		(6	points)	Show	that	this	grammar	is	ambiguous.	

The	ambiguity	is	due	to	the	exp	::=	exp	<	exp	rule.		Two	partial	leftmost	derivations	of	1 < 2 < 3	
are	enough	to	show	the	problem	(it	would	also	be	fine	to	draw	the	corresponding	parse	trees	
instead):	

exp		=>		exp	<	exp		=>		exp	<	exp	<	exp		=>*		1 < 2 < 3	

exp		=>		exp	<	exp			=>*			1 < exp			=>			1 < exp	<	exp			=>*			1 < 2 < 3	

	

	

	

	

(b)	(6	points)		Give	a	different	grammar	that	will	add	the	<	operator	to	expressions	but	that	is	
unambiguous,	gives	<	lower	precedence	than	the	other	arithmetic	operators,	and	ensures	that	<	is	left-
associative.		You	only	need	to	rewrite	or	add	the	rules	(productions)	needed	to	make	this	change	–	you	
do	not	need	to	copy	down	other	rules	that	remain	unchanged.	

Changing	the	exp	::=	exp	<	exp	rule	to	exp	::=	exp	<	term	would	fix	the	ambiguity,	but	it	doesn’t	solve	
the	precedence	problem,	since	it	gives	<	the	same	precedence	as	+	and	-.		To	get	everything	right	we	
need	to	introduce	a	new	non-terminal	so	that	relations	and	the	addition	operators	are	generated	by	
separate	rules.		Here	is	one	way	to	fix	things:	

	 exp	::=	exp2	|	exp	<	exp2	

	 exp2	::=	term	|	exp2	+	term	|	exp2	-	term	

	

	 	

CSE	413	16au	Final	Exam	Sample	Solution	

CSE	413	Final	Exam,	December	12,	2016	 Page	8	of	8	

Some	short	questions	on	memory	management.	

Question	7.	(8	points)	Two	of	the	strategies	we	looked	at	for	reclaiming	memory	automatically	were	
reference	counting	and	mark-sweep	garbage	collection.		A	claim	made	in	class	was	that	reference	
counting	did	not	always	do	as	complete	a	job	as	garbage	collection	in	reclaiming	unreachable	(not-in-
use)	memory.	

Give	an	example	of	a	dynamically	allocated	data	structure	that	would	not	be	reclaimed	by	a	memory	
manager	using	reference	counting,	but	would	be	successfully	reclaimed	by	a	mark-sweep	collector.		Give	
a	brief	and	to-the-point	explanation	of	why	this	is	the	case.	

Any	linked	data	structure	that	contain	a	cycle,	like	a	circular	list	or	a	double-linked	list,	won’t	be	
reclaimed	by	reference	counting.		In	such	data	structures	every	node	can	be	reached	from	other	
nodes,	which	means	that	all	nodes	always	have	a	positive	reference	count	even	if	no	other	variables	
point	to	any	of	the	nodes.		Even	if	the	entire	circular	data	structure	is	unreachable,	none	of	the	nodes	
will	have	a	reference	count	of	0,	so	they	will	never	be	reclaimed.	
	
A	mark-sweep	garbage	collector	has	no	problem	with	circular,	unreachable	data	structures.		They	
would	not	be	marked	during	the	mark	phase,	and	would	be	reclaimed	during	the	sweep	phase.	
	 	
Question	8.	(6	points)		In	traditional	languages	like	C	or	Java,	the	automatic	storage	used	for	function	
(method)	local	variables	is	allocated	on	a	stack.		That	makes	it	efficient	to	allocate	storage	when	a	
function	is	called	and	release	it	quickly	when	the	function	exits.		The	question	is,	can	this	always	be	done	
for	a	functional	language	like	Racket?		Why	or	why	not?		If	it	cannot	be	done,	what	needs	to	be	done	
instead?		(It	should	be	possible	to	answer	this	in	a	couple	of	sentences.)	
	
Not	always.		In	languages	like	Racket,	function	closures	contain	pointers	to	an	environment,	and	the	
lifetime	of	a	closure	can	be	longer	than	the	lifetime	of	the	function	where	the	closure	was	created.		
That	means	we	can’t	use	a	last-called,	first-deleted	set	of	stack	frames	for	environments	that	might	be	
reachable	from	a	closure	after	a	function	returns.			
	
A	common	solution	is	to	allocate	environments	reachable	from	function	closures	on	the	heap	along	
with	the	rest	of	the	dynamic	data.	
	
Question	9.	(6	points)		A	generational	garbage	collector	performs	frequent	garbage	collection	on	part	of	
the	heap,	but	does	not	collect	the	entire	heap	nearly	as	often.		Explain	why	this	is	done	in	a	couple	of	
sentences:	which	part	of	the	heap	is	collected	frequently	and	what	does	it	contain?	And	why	is	this	an	
effective	strategy?	
	
A	generational	garbage	collector	performs	frequent	collections	on	the	part	of	the	heap	containing	
recently	allocated	objects,	and	does	less	frequent	collections	on	the	remainder	of	the	heap.		The	
rationale	is	that	most	functional	and	object-oriented	languages	tend	to	allocate	many	small,	short-
lived	objects,	so	collecting	the	memory	space	containing	recently	allocated	objects	is	likely	to	reclaim	
a	much	higher	percentage	of	the	storage	examined	during	the	collection	compared	to	a	collection	of	
the	full	heap.	

Have a great winter break and best wishes for the new year!
The CSE 413 staff

