
CSE413: Programming Languages and
Implementation

Racket structs
Implementing languages with interpreters

Implementing closures

Dan Grossman
Fall 2014

Hi!

•  I’m not Hal J

•  I love this stuff and have taught this stuff many times
–  But not in CSE413
–  So stop me if I use jargon you don’t know, etc.

•  This stuff is crucial for your next homework
–  Without it you will be totally lost
–  With it, it’s challenging but straightforward

•  This material hopefully takes just about two class periods
–  See also code

Fall 2014 2 CSE413: Guest Lectures by Grossman

Announcements from Hal

•  Reminder: HW4 due Thursday night, 11PM

•  HW5 Posted, due a week from Thursday, 11PM

•  Midterm the following Monday, November 3, in class

Fall 2014 3 CSE413: Guest Lectures by Grossman

Goals

1.  Learn how to write interpreters for implementing programming
languages

2.  In particular, use closures to implement higher-order functions

3.  Represent the code of one language as data in another
language

4.  Learn Racket’s structs as a better way than lists to represent
the code of another language

Goals will overlap, but very roughly will go 3-and-4, then 1, then 2

Fall 2014 4 CSE413: Guest Lectures by Grossman

Dynamic typing + lists = everything

We know:
–  Racket has lists
–  Racket is dynamically typed

So: (nested) lists can hold any kind of tree-shaped data
–  Can just mix values of different types and use primitives like
number?, string?, pair?, etc. to “see what you have”

–  Can use cons cells to build up any kind of data

“This works” – see code for a little language of arithmetic
expressions

Fall 2014 5 CSE413: Guest Lectures by Grossman

Comments on what we did

Using lists where car of list encodes “what kind of expression”

Key points:

•  Define our own constructor, test-variant, extract-data functions
–  Just better style than hard-to-read uses of car, cdr

•  Elegant recursive structure with a “big cond”

•  With no type system, no notion of “what is an expression” except in
documentation
–  But if we use the helper functions correctly, then okay
–  Could add more explicit error-checking if desired

Note: Use of symbols and eq? is idiomatic Racket, but not necessary
 Fall 2014 6 CSE413: Guest Lectures by Grossman

New feature

Defines a new kind of thing and introduces several new functions:
•  (foo e1 e2 e3) returns “a foo” with bar, baz, quux fields

holding results of evaluating e1, e2, and e3
•  (foo? e) evaluates e and returns #t if and only if the result is

something that was made with the foo function
•  (foo-bar e) evaluates e. If result was made with the foo

function, return the contents of the bar field, else an error
•  (foo-baz e) evaluates e. If result was made with the foo

function, return the contents of the baz field, else an error
•  (foo-quux e) evaluates e. If result was made with the foo

function, return the contents of the quux field, else an error

Fall 2014 7 CSE413: Guest Lectures by Grossman

(struct foo (bar baz quux) #:transparent)

An idiom

For “types” like expression, create one struct for each “kind of exp”
–  Conveniently defines constructor, tester, and extractor

functions
•  E.g., const, const?, const-int

–  Dynamic typing means “these are the kinds of expression” is
“still [just] in comments”

–  Dynamic typing means “types” of fields are also “just in
comments”

Fall 2014 8 CSE413: Guest Lectures by Grossman

(struct const (int) #:transparent)
(struct negate (e) #:transparent)
(struct add (e1 e2) #:transparent)
(struct multiply (e1 e2) #:transparent)

All we need
These structs are all we need to:

•  Build trees representing expressions, e.g.,

•  Build our eval-exp function (see code):

Fall 2014 9 CSE413: Guest Lectures by Grossman

(multiply (negate (add (const 2) (const 2)))
 (const 7))

(define (eval-exp e)
 (cond [(const? e) e]
 [(negate? e)
 (const (- (const-int
 (eval-exp (negate-e e)))))]
 [(add? e) …]
 [(multiply? e) …]…

Attributes

•  #:transparent is an optional attribute on struct definitions
–  For us, prints struct values in the REPL (interactions

window)rather than hiding them, which is convenient for
debugging homework

•  #:mutable is another optional attribute on struct definitions
–  Provides more functions, for example:

–  Can decide if each struct supports mutation, with usual
advantages and disadvantages

•  We will avoid this attribute; guarantees no mutation
–  mcons is just a predefined mutable struct

Fall 2014 10 CSE413: Guest Lectures by Grossman

(struct card (suit rank) #:transparent #:mutable)
; also defines set-card-suit!, set-card-rank!

Contrasting Approaches

Versus

This is not a case of “syntactic sugar”

–  Syntactic sugar: More convenient syntax for writing
something already in the language

Fall 2014 11 CSE413: Guest Lectures by Grossman

(struct add (e1 e2) #:transparent)

(define (add e1 e2) (list 'add e1 e2))
(define (add? e) (eq? (car e) 'add))
(define (add-e1 e) (car (cdr e)))
(define (add-e2 e) (car (cdr (cdr e))))

The key difference

•  The result of calling (add x y) is not a list
–  And there is no list for which add? returns #t

•  struct makes a new kind of thing: extending Racket with a new
kind of data

•  So calling car, cdr, or mult-e1 on “an add” is a run-time error
–  Not true for the version with lists (!)

Fall 2014 12 CSE413: Guest Lectures by Grossman

(struct add (e1 e2) #:transparent)

List approach is error-prone

•  Can break abstraction by using car, cdr, and list-library
functions directly on “add expressions”
–  Silent likely error:
(define xs (list (add (const 1)(const 4)) …))
(car (car xs))

•  Can make data that add? wrongly answers #t to
(cons 'add "I am not an add")

Fall 2014 13 CSE413: Guest Lectures by Grossman

(define (add e1 e2) (list 'add e1 e2))
(define (add? e) (eq? (car e) 'add))
(define (add-e1 e) (car (cdr e)))
(define (add-e2 e) (car (cdr (cdr e))))

Summary of advantages

Struct approach:

•  Is better style and more concise for defining data types

•  Is about equally convenient for using data types

•  But much better at timely errors when misusing data types
–  Cannot use accessor functions on wrong kind of data
–  Cannot confuse tester functions

But: Still doesn’t enforce that fields “have the right type”
–  Not covering: Could use Racket’s modules or contracts to do

that

Fall 2014 14 CSE413: Guest Lectures by Grossman

Struct is special

Often we end up learning that some convenient feature could be
coded up with other features

Not so with struct definitions:

•  A function cannot introduce multiple bindings

•  Creating a new kind of data has to be a “built-in primitive”

–  Result of constructor function returns #f for every other
tester function: number?, pair?, other structs’ tester
functions, etc.

Fall 2014 15 CSE413: Guest Lectures by Grossman

Now…

A step back to talk about general approaches to implementing
programming languages…

Fall 2014 16 CSE413: Guest Lectures by Grossman

Implementing languages

Much of course has been fundamental concepts for using PLs
–  Syntax, semantics, idioms
–  Important concepts like closures, delayed evaluation, …

But also valuable (and fun!) to learn basics of implementing PLs

–  Requires fully understanding semantics
–  Things like closures and objects are not “magic”
–  Many programming techniques are related/similar

•  Example: rendering a document (“program” is the
structured document, “pixels” is the output)

–  Substantial part of CSE413 course description

Fall 2014 17 CSE413: Guest Lectures by Grossman

Typical workflow

Fall 2014 18 CSE413: Guest Lectures by Grossman

"(fn x => x + x) 4"
 Parsing

Call

Function

+

Constant

4 x

x x
Var Var Type checking?

Possible
errors /
warnings

Rest of implementation

Possible
errors /
warnings

concrete syntax (string)

abstract syntax (tree)

Interpreter or compiler

So “rest of implementation” takes the abstract syntax tree (AST)
and “runs the program” to produce a result

Fundamentally, two approaches to implement a PL B:

•  Write an interpreter in another language A
–  Better names: evaluator, executor
–  Take a program in B and produce an answer (in B)

•  Write a compiler in another language A to a third language C
–  Better name: translator
–  Translation must preserve meaning (equivalence)

We call A the metalanguage
–  Crucial to keep A and B straight

Fall 2014 19 CSE413: Guest Lectures by Grossman

Reality more complicated

Evaluation (interpreter) and translation (compiler) are your options
–  But in modern practice have both and multiple layers

A plausible example:
–  Java compiler to bytecode intermediate language
–  Have an interpreter for bytecode (itself in binary), but

compile frequent functions to binary at run-time
–  The chip is itself an interpreter for binary

•  Well, except these days the x86 has a translator in
hardware to more primitive micro-operations it then
executes

Racket implementation itself uses a similar mix

Fall 2014 20 CSE413: Guest Lectures by Grossman

Sermon

Interpreter versus compiler versus combinations is about a
particular language implementation, not the language definition

So there is no such thing as a “compiled language” or an
“interpreted language”

–  Programs cannot “see” how the implementation works

Unfortunately, you often hear such phrases

–  “C is faster because it’s compiled and LISP is interpreted”
–  This is nonsense; politely correct people

–  (Admittedly, languages with “eval” must “ship with some
implementation of the language” in each program)

Fall 2014 21 CSE413: Guest Lectures by Grossman

Typical workflow

Fall 2014 22 CSE413: Guest Lectures by Grossman

"(fn x => x + x) 7"
 Parsing

Type checking?

Possible
errors /
warnings

Interpreter or translater

Possible
errors /
warnings

concrete syntax (string)

abstract syntax (tree) Call

Function

+

Constant

4 x

x x
Var Var

Skipping parsing [until later in quarter]

•  If implementing PL B in PL A, we can skip parsing
–  Have B programmers write ASTs directly in PL A
–  Not so bad with Racket structs
–  Embeds B programs as trees in A

Fall 2014 23 CSE413: Guest Lectures by Grossman

; define B’s abstract syntax
(struct call …)
(struct function …)
(struct var …)
…

; example B program
(call (function (list “x”)
 (add (var “x”)
 (var “x”)))
 (const 4))

Call

Function

+

Constant

4 x

x x
Var Var

Already did an example!

•  Let the metalanguage A = Racket
•  Let the language-implemented B = “Arithmetic Language”
•  Arithmetic programs written with calls to Racket constructors
•  The interpreter is eval-exp

Fall 2014 24 CSE413: Guest Lectures by Grossman

(struct const (int) #:transparent)
(struct negate (e) #:transparent)
(struct add (e1 e2) #:transparent)
(struct multiply (e1 e2) #:transparent)

(define (eval-exp e)
 (cond [(const? e) e]
 [(negate? e)
 (const (- (const-int
 (eval-exp (negate-e e)))))]
 [(add? e) …]
 [(multiply? e) …]…

Racket data structure is
Arithmetic Language
program, which
eval-exp runs

What we know

•  Define (abstract) syntax of language B with Racket structs
–  B called MUPL in homework

•  Write B programs directly in Racket via constructors
•  Implement interpreter for B as a (recursive) Racket function

Now, a subtle-but-important distinction:
–  Interpreter can assume input is a “legal AST for B”

•  Okay to give wrong answer or inscrutable error otherwise
–  Interpreter must check that recursive results are the right

kind of value
•  Give a good error message otherwise

Fall 2014 25 CSE413: Guest Lectures by Grossman

Legal ASTs
•  “Trees the interpreter must handle” are a subset of all the trees

Racket allows as a dynamically typed language

•  Can assume “right types” for struct fields
–  const holds a number
–  negate holds a legal AST
–  add and multiply hold 2 legal ASTs

•  Illegal ASTs can “crash the interpreter” – this is fine

Fall 2014 26 CSE413: Guest Lectures by Grossman

(struct const (int) #:transparent)
(struct negate (e) #:transparent)
(struct add (e1 e2) #:transparent)
(struct multiply (e1 e2) #:transparent)

(multiply (add (const 3) "uh-oh") (const 4))
(negate -7)

Interpreter results

•  Our interpreters return expressions, but not any expressions
–  Result should always be a value-in-language-being-

interpreted, a kind of expression that evaluates to itself
–  If not, the interpreter has a bug

•  So far, only values are from const, e.g., (const 17)

•  But a larger language has more values than just numbers
–  Booleans, strings, etc.
–  Pairs of values (definition of value recursive)
–  Closures
–  …

Fall 2014 27 CSE413: Guest Lectures by Grossman

Example
See code for language that adds booleans, number-comparison,
and conditionals:

What if the program is a legal AST, but evaluation of it tries to use
the wrong kind of value?

–  For example, “add a boolean”
–  You should detect this and give an error message not in

terms of the interpreter implementation
–  Means checking a recursive result whenever a particular

kind of value is needed
•  No need to check if any kind of value is okay

Fall 2014 28 CSE413: Guest Lectures by Grossman

(struct bool (b) #:transparent)
(struct eq-num (e1 e2) #:transparent)
(struct if-then-else (e1 e2 e3) #:transparent)

Dealing with variables

•  Interpreters so far have been for languages without variables
–  No let-expressions, functions-with-arguments, etc.
–  Language in homework has all these things

•  This segment describes in English what to do
–  Up to you to translate this to code

•  Fortunately, what you have to implement is what you have been
using conceptually throughout course

Fall 2014 29 CSE413: Guest Lectures by Grossman

Dealing with variables

•  An environment is a mapping from variables (Racket strings) to
values (as defined by the language)
–  Only ever put pairs of strings and values in the environment

•  Evaluation takes place in an environment
–  Environment passed as argument to interpreter helper function
–  A variable expression looks up the variable in the environment
–  Most subexpressions use same environment as outer

expression
–  A let-expression evaluates its body in a larger environment

Fall 2014 30 CSE413: Guest Lectures by Grossman

The Set-up

So now a recursive helper function has all the interesting stuff:

–  Recursive calls must “pass down” correct environment

Then eval-exp just calls eval-under-env with same
expression and the empty environment

On homework, environments themselves are just Racket lists
containing Racket pairs of a string (the MUPL variable name, e.g.,
"x") and a MUPL value (e.g., (int 17))

Fall 2014 31 CSE413: Guest Lectures by Grossman

(define (eval-under-env e env)
 (cond … ; case for each kind of
)) ; expression

A grading detail

•  Stylistically eval-under-env would be a helper function one
could define locally inside eval-exp

•  But homework has you not do this
–  Helps with grading tests to call eval-under-env directly,

so we need it at top-level

Fall 2014 32 CSE413: Guest Lectures by Grossman

The best part

•  The most interesting and mind-bending part of the homework is
that the language being implemented has first-class closures
–  With lexical scope of course

•  Fortunately, what you have to implement is what you have
previously learned about closures…

Fall 2014 33 CSE413: Guest Lectures by Grossman

Higher-order functions
The “magic”: How do we use the “right environment” for lexical
scope when functions may return other functions, store them in
data structures, etc.?

Lack of magic: The interpreter uses a closure data structure (with
two parts) to keep the environment it will need to use later

Evaluate a function expression:
–  A function is not a value; a closure is a value

•  Evaluating a function returns a closure
–  Create a closure out of (a) the function and (b) the current

environment when the function was evaluated

Evaluate a function call:
–  …

Fall 2014 34 CSE413: Guest Lectures by Grossman

(struct closure (env fun) #:transparent)

Function calls

•  Use current environment to evaluate e1 to a closure
–  Error if result is a value that is not a closure

•  Use current environment to evaluate e2 to a value
•  Evaluate closure’s function’s body in the closure’s environment,

extended to:
–  Map the function’s argument-name to the argument-value
–  And for recursion, map the function’s name to the whole closure

This is the same semantics you learned already “coded up”

Given a closure, the code part is only ever evaluated using the
environment part (extended), not the environment at the call-site

Fall 2014 35 CSE413: Guest Lectures by Grossman

(call e1 e2)

Optional: Is that expensive?

•  Time to build a closure is tiny: a struct with two fields

•  Space to store closures might be large if environment is large
–  But environments are immutable, so natural and correct to

have lots of sharing, e.g., of list tails
–  Still, end up keeping around bindings that are not needed

•  Alternative used in practice: When creating a closure, store a
possibly-smaller environment holding only the variables that are
free variables in the function body
–  Free variables: Variables that occur, not counting shadowed

uses of the same variable name
–  A function body would never need anything else from the

environment

Fall 2014 36 CSE413: Guest Lectures by Grossman

Optional: Free variables examples

(lambda () (+ x y z)) ; {x, y, z}

(lambda (x) (+ x y z)) ; {y, z}

(lambda (x) (if x y z)) ; {y, z}

(lambda (x) (let ([y 0]) (+ x y z))) ; {z}

(lambda (x y z) (+ x y z)) ; {}

(lambda (x) (+ y (let ([y z]) (+ y y)))) ; {y, z}

Fall 2014 37 CSE413: Guest Lectures by Grossman

Optional: Computing free variables

•  So does the interpreter have to analyze the code body every
time it creates a closure?

•  No: Before evaluation begins, compute free variables of every
function in program and store this information with the function

•  Compared to naïve store-entire-environment approach, building
a closure now takes more time but less space
–  And time proportional to number of free variables
–  And various optimizations are possible

•  [Also use a much better data structure for looking up variables
than a list]

Fall 2014 38 CSE413: Guest Lectures by Grossman

Optional: compiling higher-order functions

•  If we are compiling to a language without closures (like

assembly), cannot rely on there being a “current environment”

•  So compile functions by having the translation produce “regular”
functions that all take an extra explicit argument called
“environment”

•  And compiler replaces all uses of free variables with code that
looks up the variable using the environment argument
–  Can make these fast operations with some tricks

•  Running program still creates closures and every function call
passes the closure’s environment to the closure’s code

Fall 2014 39 CSE413: Guest Lectures by Grossman

Recall…

Our approach to language implementation:

•  Implementing language B in language A
•  Skipping parsing by writing language B programs directly in

terms of language A constructors
•  An interpreter written in A recursively evaluates

Now: The idea of using A functions like B macros
•  “Feels like” extending the syntax of B
•  Use of a “macro” expands into language syntax before the

program is run, i.e., before calling the main interpreter function

Fall 2014 40 CSE413: Guest Lectures by Grossman

Put it together

With our set-up, we can use language A (i.e., Racket) functions
that produce language B abstract syntax as language B “macros”

–  Language B programs can use the “macros” as though they
are part of language B

–  No change to the interpreter or struct definitions

–  Just a programming idiom enabled by our set-up
•  Helps teach what macros are

–  See code for example “macro” definitions and “macro” uses
•  “macro expansion” happens before calling eval-exp

Fall 2014 41 CSE413: Guest Lectures by Grossman

