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Hi! 

•  I’m not Hal J 

•  I love this stuff and have taught this stuff many times 
–  But not in CSE413 
–  So stop me if I use jargon you don’t know, etc. 

•  This stuff is crucial for your next homework  
–  Without it you will be totally lost 
–  With it, it’s challenging but straightforward 

•  This material hopefully takes just about two class periods 
–  See also code 
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Announcements from Hal 

 
•  Reminder: HW4 due Thursday night, 11PM 

•  HW5 Posted, due a week from Thursday, 11PM 

•  Midterm the following Monday, November 3, in class 
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Goals 

1.  Learn how to write interpreters for implementing programming 
languages 

2.  In particular, use closures to implement higher-order functions 

3.  Represent the code of one language as data in another 
language 

4.  Learn Racket’s structs as a better way than lists to represent 
the code of another language 

Goals will overlap, but very roughly will go 3-and-4, then 1, then 2 
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Dynamic typing + lists = everything 

We know: 
–  Racket has lists 
–  Racket is dynamically typed 

So: (nested) lists can hold any kind of tree-shaped data 
–  Can just mix values of different types and use primitives like 
number?, string?, pair?, etc. to “see what you have” 

–  Can use cons cells to build up any kind of data 

“This works” – see code for a little language of arithmetic 
expressions 
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Comments on what we did 

Using lists where car of list encodes “what kind of expression” 
 
Key points: 
 

•  Define our own constructor, test-variant, extract-data functions 
–  Just better style than hard-to-read uses of car, cdr 

•  Elegant recursive structure with a “big cond” 

•  With no type system, no notion of “what is an expression” except in 
documentation 
–  But if we use the helper functions correctly, then okay 
–  Could add more explicit error-checking if desired 

 
Note: Use of symbols and eq? is idiomatic Racket, but not necessary 
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New feature 

 
Defines a new kind of thing and introduces several new functions: 
•  (foo e1 e2 e3) returns “a foo” with bar, baz, quux fields 

holding results of evaluating e1, e2, and e3 
•  (foo? e) evaluates e and returns #t if and only if the result is 

something that was made with the foo function 
•  (foo-bar e) evaluates e.  If result was made with the foo 

function, return the contents of the bar field, else an error 
•  (foo-baz e) evaluates e.  If result was made with the foo 

function, return the contents of the baz field, else an error 
•  (foo-quux e) evaluates e.  If result was made with the foo 

function, return the contents of the quux field, else an error 
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(struct foo (bar baz quux) #:transparent) 



An idiom 

For “types” like expression, create one struct for each “kind of exp” 
–  Conveniently defines constructor, tester, and extractor 

functions 
•  E.g., const, const?, const-int 

–  Dynamic typing means “these are the kinds of expression” is 
“still [just] in comments” 

–  Dynamic typing means “types” of fields are also “just in 
comments” 
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(struct const (int) #:transparent) 
(struct negate (e) #:transparent) 
(struct add (e1 e2) #:transparent) 
(struct multiply (e1 e2) #:transparent) 
 



All we need 
These structs are all we need to: 
 
•  Build trees representing expressions, e.g., 
    

•  Build our eval-exp function (see code): 
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(multiply (negate (add (const 2) (const 2)))    
          (const 7)) 

(define (eval-exp e) 
  (cond [(const? e) e] 
        [(negate? e) 
         (const (- (const-int  
                     (eval-exp (negate-e e)))))] 
        [(add? e) …] 
        [(multiply? e) …]… 



Attributes 

•  #:transparent is an optional attribute on struct definitions 
–  For us, prints struct values in the REPL (interactions 

window)rather than hiding them, which is convenient for 
debugging homework 

•  #:mutable is another optional attribute on struct definitions 
–  Provides more functions, for example: 

–  Can decide if each struct supports mutation, with usual 
advantages and disadvantages 

•  We will avoid this attribute; guarantees no mutation 
–  mcons is just a predefined mutable struct 
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(struct card (suit rank) #:transparent #:mutable) 
; also defines set-card-suit!, set-card-rank! 



Contrasting Approaches 

 
Versus 
 
 
 
 
 
This is not a case of “syntactic sugar” 

–  Syntactic sugar: More convenient syntax for writing 
something already in the language 
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(struct add (e1 e2) #:transparent) 
 

(define (add e1 e2) (list 'add e1 e2))  
(define (add? e) (eq? (car e) 'add)) 
(define (add-e1 e) (car (cdr e))) 
(define (add-e2 e) (car (cdr (cdr e)))) 
 



The key difference 

•  The result of calling (add x y) is not a list 
–  And there is no list for which add? returns #t 

•  struct makes a new kind of thing: extending Racket with a new 
kind of data 

•  So calling car, cdr, or mult-e1 on “an add” is a run-time error 
–  Not true for the version with lists (!) 
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(struct add (e1 e2) #:transparent) 
 



List approach is error-prone 

•  Can break abstraction by using car, cdr, and list-library 
functions directly on “add expressions” 
–  Silent likely error: 
(define xs (list (add (const 1)(const 4)) …)) 
(car (car xs)) 

•  Can make data that add? wrongly answers #t to 
(cons 'add "I am not an add")  
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(define (add e1 e2) (list 'add e1 e2))  
(define (add? e) (eq? (car e) 'add)) 
(define (add-e1 e) (car (cdr e))) 
(define (add-e2 e) (car (cdr (cdr e)))) 
 



Summary of advantages 

Struct approach: 
 
•  Is better style and more concise for defining data types 

•  Is about equally convenient for using data types  

•  But much better at timely errors when misusing data types 
–  Cannot use accessor functions on wrong kind of data 
–  Cannot confuse tester functions 

But: Still doesn’t enforce that fields “have the right type” 
–  Not covering: Could use Racket’s modules or contracts to do 

that 
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Struct is special 

Often we end up learning that some convenient feature could be 
coded up with other features 
 
Not so with struct definitions: 
 
•  A function cannot introduce multiple bindings 
 
•  Creating a new kind of data has to be a “built-in primitive” 

–  Result of constructor function returns #f for every other 
tester function: number?, pair?, other structs’ tester 
functions, etc. 
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Now… 

A step back to talk about general approaches to implementing 
programming languages… 
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Implementing languages 

Much of course has been fundamental concepts for using PLs 
–  Syntax, semantics, idioms 
–  Important concepts like closures, delayed evaluation, … 

 
But also valuable (and fun!) to learn basics of implementing PLs 

–  Requires fully understanding semantics 
–  Things like closures and objects are not “magic” 
–  Many programming techniques are related/similar 

•  Example: rendering a document (“program” is the 
structured document, “pixels” is the output) 

–  Substantial part of CSE413 course description 
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Typical workflow 
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"(fn x => x + x) 4" 
 Parsing 

Call 

Function 

+ 

Constant 

4 x 

x x 
Var Var Type checking? 

Possible  
errors / 
warnings 

Rest of implementation 

Possible  
errors / 
warnings 

concrete syntax (string) 

abstract syntax (tree) 



Interpreter or compiler 

So “rest of implementation” takes the abstract syntax tree (AST) 
and “runs the program” to produce a result 
 

Fundamentally, two approaches to implement a PL  B: 
 

•  Write an interpreter in another language A 
–  Better names: evaluator, executor 
–  Take a program in B and produce an answer (in B) 

•  Write a compiler in another language A to a third language C 
–  Better name: translator 
–  Translation must preserve meaning (equivalence) 

We call A the metalanguage 
–  Crucial to keep A and B straight 

 
 
Fall 2014 19 CSE413: Guest Lectures by Grossman 



Reality more complicated 

Evaluation (interpreter) and translation (compiler) are your options 
–  But in modern practice have both and multiple layers 

A plausible example: 
–  Java compiler to bytecode intermediate language 
–  Have an interpreter for bytecode (itself in binary), but 

compile frequent functions to binary at run-time 
–  The chip is itself an interpreter for binary 

•  Well, except these days the x86 has a translator in 
hardware to more primitive micro-operations it then 
executes 

 
Racket implementation itself uses a similar mix 
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Sermon 

Interpreter versus compiler versus combinations is about a 
particular language implementation, not the language definition 

 
So there is no such thing as a “compiled language” or an 
“interpreted language” 

–  Programs cannot “see” how the implementation works 
 
Unfortunately, you often hear such phrases 

–  “C is faster because it’s compiled and LISP is interpreted” 
–  This is nonsense; politely correct people 

–  (Admittedly, languages with “eval” must “ship with some 
implementation of the language” in each program) 
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Typical workflow 
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"(fn x => x + x) 7" 
 Parsing 

Type checking? 

Possible  
errors / 
warnings 

Interpreter or translater 

Possible  
errors / 
warnings 

concrete syntax (string) 

abstract syntax (tree) Call 

Function 

+ 

Constant 

4 x 

x x 
Var Var 



Skipping parsing [until later in quarter] 

•  If implementing PL B in PL A, we can skip parsing  
–  Have B programmers write ASTs directly in PL A 
–  Not so bad with Racket structs 
–  Embeds B programs as trees in A 
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; define B’s abstract syntax 
(struct call …) 
(struct function …) 
(struct var …) 
… 
 
; example B program 
(call (function (list “x”) 
                (add (var “x”) 
                     (var “x”))) 
      (const 4)) 

Call 

Function 

+ 

Constant 

4 x 

x x 
Var Var 



Already did an example! 

•  Let the metalanguage A = Racket 
•  Let the language-implemented B = “Arithmetic Language” 
•  Arithmetic programs written with calls to Racket constructors 
•  The interpreter is eval-exp 
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(struct const (int) #:transparent) 
(struct negate (e) #:transparent) 
(struct add (e1 e2) #:transparent) 
(struct multiply (e1 e2) #:transparent) 
 
(define (eval-exp e) 
  (cond [(const? e) e] 
        [(negate? e) 
         (const (- (const-int  
                     (eval-exp (negate-e e)))))] 
        [(add? e) …] 
        [(multiply? e) …]… 

Racket data structure is 
Arithmetic Language 
program, which    
eval-exp runs 



What we know 

•  Define (abstract) syntax of language B with Racket structs 
–  B called MUPL in homework 

•  Write B programs directly in Racket via constructors 
•  Implement interpreter for B as a (recursive) Racket function 

Now, a subtle-but-important distinction: 
–  Interpreter can assume input is a “legal AST for B” 

•  Okay to give wrong answer or inscrutable error otherwise 
–  Interpreter must check that recursive results are the right 

kind of value  
•  Give a good error message otherwise 
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Legal ASTs 
•  “Trees the interpreter must handle” are a subset of all the trees 

Racket allows as a dynamically typed language 

•  Can assume “right types” for struct fields 
–  const holds a number 
–  negate holds a legal AST 
–  add and multiply hold 2 legal ASTs 

•  Illegal ASTs can “crash the interpreter” – this is fine 
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(struct const (int) #:transparent) 
(struct negate (e) #:transparent) 
(struct add (e1 e2) #:transparent) 
(struct multiply (e1 e2) #:transparent) 
 

(multiply (add (const 3) "uh-oh") (const 4)) 
(negate -7) 



Interpreter results 

•  Our interpreters return expressions, but not any expressions 
–  Result should always be a value-in-language-being-

interpreted, a kind of expression that evaluates to itself 
–  If not, the interpreter has a bug 

•  So far, only values are from const, e.g., (const 17) 

•  But a larger language has more values than just numbers 
–  Booleans, strings, etc. 
–  Pairs of values (definition of value recursive) 
–  Closures 
–  … 
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Example 
See code for language that adds booleans, number-comparison, 
and conditionals: 
 
 
 
 
What if the program is a legal AST, but evaluation of it tries to use 
the wrong kind of value? 

–  For example, “add a boolean” 
–  You should detect this and give an error message not in 

terms of the interpreter implementation 
–  Means checking a recursive result whenever a particular 

kind of value is needed 
•  No need to check if any kind of value is okay 
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(struct bool (b) #:transparent) 
(struct eq-num (e1 e2) #:transparent) 
(struct if-then-else (e1 e2 e3) #:transparent) 
 



Dealing with variables 

•  Interpreters so far have been for languages without variables 
–  No let-expressions, functions-with-arguments, etc. 
–  Language in homework has all these things 

•  This segment describes in English what to do 
–  Up to you to translate this to code 

•  Fortunately, what you have to implement is what you have been 
using conceptually throughout course 
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Dealing with variables 

•  An environment is a mapping from variables (Racket strings) to 
values (as defined by the language) 
–  Only ever put pairs of strings and values in the environment 

•  Evaluation takes place in an environment 
–  Environment passed as argument to interpreter helper function 
–  A variable expression looks up the variable in the environment 
–  Most subexpressions use same environment as outer 

expression 
–  A let-expression evaluates its body in a larger environment 
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The Set-up 

So now a recursive helper function has all the interesting stuff: 
 
 
 

–  Recursive calls must “pass down” correct environment 

Then eval-exp just calls eval-under-env with same 
expression and the empty environment 
 
On homework, environments themselves are just Racket lists 
containing Racket pairs of a string (the MUPL variable name, e.g., 
"x") and a MUPL value (e.g., (int 17)) 
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(define (eval-under-env e env) 
   (cond … ; case for each kind of         
    ))     ; expression 



A grading detail 

•  Stylistically eval-under-env would be a helper function one 
could define locally inside eval-exp 

•  But homework has you not do this 
–  Helps with grading tests to call eval-under-env directly, 

so we need it at top-level 

Fall 2014 32 CSE413: Guest Lectures by Grossman 



The best part 

•  The most interesting and mind-bending part of the homework is 
that the language being implemented has first-class closures 
–  With lexical scope of course 

•  Fortunately, what you have to implement is what you have 
previously learned about closures… 
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Higher-order functions 
The “magic”: How do we use the “right environment” for lexical 
scope when functions may return other functions, store them in 
data structures, etc.? 
 

Lack of magic: The interpreter uses a closure data structure (with 
two parts) to keep the environment it will need to use later 
 
 
 

Evaluate a function expression: 
–  A function is not a value; a closure is a value 

•  Evaluating a function returns a closure 
–  Create a closure out of (a) the function and (b) the current 

environment when the function was evaluated 

Evaluate a function call: 
–  … 
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(struct closure (env fun) #:transparent) 
 



Function calls 

•  Use current environment to evaluate e1 to a closure 
–  Error if result is a value that is not a closure 

•  Use current environment to evaluate e2 to a value 
•  Evaluate closure’s function’s body in the closure’s environment, 

extended to: 
–  Map the function’s argument-name to the argument-value 
–  And for recursion, map the function’s name to the whole closure 

This is the same semantics you learned already “coded up” 
 

Given a closure, the code part is only ever evaluated using the 
environment part (extended), not the environment at the call-site 
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(call e1 e2) 



Optional: Is that expensive? 

•  Time to build a closure is tiny: a struct with two fields 

•  Space to store closures might be large if environment is large 
–  But environments are immutable, so natural and correct to 

have lots of sharing, e.g., of list tails 
–  Still, end up keeping around bindings that are not needed 

•  Alternative used in practice:  When creating a closure, store a 
possibly-smaller environment holding only the variables that are 
free variables in the function body 
–  Free variables: Variables that occur, not counting shadowed 

uses of the same variable name 
–  A function body would never need anything else from the 

environment 
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Optional: Free variables examples 

(lambda () (+ x y z))   ; {x, y, z} 
 
(lambda (x) (+ x y z))  ; {y, z} 
 
(lambda (x) (if x y z)) ; {y, z} 
 
(lambda (x) (let ([y 0]) (+ x y z))) ; {z} 
 
(lambda (x y z) (+ x y z)) ; {} 
 
(lambda (x) (+ y (let ([y z]) (+ y y)))) ; {y, z} 

Fall 2014 37 CSE413: Guest Lectures by Grossman 



Optional: Computing free variables 

•  So does the interpreter have to analyze the code body every 
time it creates a closure? 

•  No: Before evaluation begins, compute free variables of every 
function in program and store this information with the function 

•  Compared to naïve store-entire-environment approach, building 
a closure now takes more time but less space 
–  And time proportional to number of free variables 
–  And various optimizations are possible 

•  [Also use a much better data structure for looking up variables 
than a list] 
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Optional: compiling higher-order functions 
 
•  If we are compiling to a language without closures (like 

assembly), cannot rely on there being a “current environment” 

•  So compile functions by having the translation produce “regular” 
functions that all take an extra explicit argument called 
“environment” 

•  And compiler replaces all uses of free variables with code that 
looks up the variable using the environment argument 
–  Can make these fast operations with some tricks 

•  Running program still creates closures and every function call 
passes the closure’s environment to the closure’s code 
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Recall… 

Our approach to language implementation: 
 

•  Implementing language B in language A 
•  Skipping parsing by writing language B programs directly in 

terms of language A constructors 
•  An interpreter written in A recursively evaluates  

Now: The idea of using A functions like B macros 
•  “Feels like” extending the syntax of B 
•  Use of a “macro” expands into language syntax before the 

program is run, i.e., before calling the main interpreter function 
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Put it together 

With our set-up, we can use language A (i.e., Racket) functions 
that produce language B abstract syntax as language B “macros” 
 

–  Language B programs can use the “macros” as though they 
are part of language B 

–  No change to the interpreter or struct definitions 

–  Just a programming idiom enabled by our set-up 
•  Helps teach what macros are 

–  See code for example “macro” definitions and “macro” uses 
•  “macro expansion” happens before calling eval-exp 
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