
CSE 413 Autumn 2008

Parsers, Scanners &
Regular Expressions

11/19/2008

A dAgenda

Overview of language recognizers
Basic concepts of formal grammarsBasic concepts of formal grammars
Scanner Theory

R l iRegular expressions
Finite automata (to recognize regular
expressions)expressions)

Scanner Implementation

11/19/2008

A d th i t iAnd the point is…

How do execute this?
int nPos = 0;int nPos = 0;
int k = 0;
while (k < length) {

if (a[k] > 0) {if (a[k] > 0) {
nPos++;

}
}}

How do we understand what it means?

C il I t tCompilers vs. Interpreters

Interpreter
A program that reads a source program andA program that reads a source program and
executes that program

CompilerCompiler
A program that translates a program from one
language (the source) to another (the target)language (the source) to another (the target)

I t tInterpreter

Interpreter
Execution engine
P i i l d i h l iProgram execution interleaved with analysis

running = true;
while (running) {

analyze next statement;analyze next statement;
execute that statement;

}

May involve repeated analysis of someMay involve repeated analysis of some
statements (loops, functions)

C ilCompiler

Read and analyze entire program
Translate to semantically equivalent program in y q p g
another language

Presumably easier to execute or more efficient
Should “improve” the program in some fashion

Offline process
Tradeoff: compile time overhead (preprocessing step)
vs execution performance

H b id hHybrid approaches

Well-known example: Java
Compile Java source to byte codes – Java Virtual
Machine language (class files)Machine language (.class files)
Execution

Interpret byte codes directly, or
Compile some or all byte codes to native code

Just-In-Time compiler (JIT) – detect hot spots & compile on the
fly to native code

Variation: .NET
Compilers generate MSIL
All IL compiled to native code before executionAll IL compiled to native code before execution

C il /I t t St tCompiler/Interpreter Structure

First approximation
Front end: analysisFront end: analysis

Read source program and understand its structure
and meaning

Back end: synthesis
Execute or generate equivalent target program

Source TargetFront End Back End

C ICommon Issues

Compilers and interpreters both must read
the input – a stream of characters – and p
“understand” it; analysis

w h i l e (k < l e n g t h) { <nl> <tab> i f (a [k] > 0
) <nl> <tab> <tab>{ n P o s + + ; } <nl> <tab> }

P i L SProgramming Language Specs

Since the 1960s, the syntax of every
significant programming language has g p g g g g
been specified by a formal grammar

First done in 1959 with BNF (Backus-NaurFirst done in 1959 with BNF (Backus Naur
Form or Backus-Normal Form) used to
specify the syntax of ALGOL 60
Borrowed from the linguistics community
(Chomsky)

11/19/2008

G f Ti LGrammar for a Tiny Language

program ::= statement | program statement
statement ::= assignStmt | ifStmtg |
assignStmt ::= id = expr ;
ifStmt ::= if (expr) statement(p)
expr ::= id | int | expr + expr
id ::= a | b | c | i | j | k | n | x | y | zid :: a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

11/19/2008

C t t F GContext-Free Grammars

Formally, a grammar G is a tuple <N,Σ,P,S>
where

N a finite set of non-terminal symbols
Σ a finite set of terminal symbols
P a finite set of productionsP a finite set of productions

A subset of N × (N ∪ Σ)*
S the start symbol, a distinguished element of N y , g

If not specified otherwise, this is usually assumed to be
the non-terminal on the left of the first production

P d tiProductions
The rules of a grammar are called productions
Rules contain

Nonterminal symbols: grammar variables (program, statement, y g (p g , ,
id, etc.)
Terminal symbols: concrete syntax that appears in programs (a,
b, c, 0, 1, if, (, …)

M i fMeaning of
nonterminal ::= <sequence of terminals and nonterminals>
In a derivation, an instance of nonterminal can be replaced by
the sequence of terminals and nonterminals on the right of thethe sequence of terminals and nonterminals on the right of the
production

Often, there are two or more productions for a single
nonterminal – can use either at different timesnonterminal can use either at different times

11/19/2008

Alt ti N t tiAlternative Notations

There are several syntax notations for
productions in common use; all mean the p ;
same thing
ifStmt ::= if (expr) stmtifStmt :: if (expr) stmt
ifStmt if (expr) stmt
<ifStmt> ::= if (<expr>) <stmt><ifStmt> :: if (<expr>) <stmt>

11/19/2008

Example
program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;
ifStmt ::= if (expr) statementExample

Derivation
ifStmt :: if (expr) statement
expr ::= id | int | expr + expr
id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

a = 1 ; if (a + 1) b = 2 ;
11/19/2008

P iParsing

Parsing: reconstruct the derivation
(syntactic structure) of a program(y) p g
In principle, a single recognizer could work
directly from the concrete character-by-directly from the concrete, character by
character grammar
In practice this is never doneIn practice this is never done

11/19/2008

P i & S iParsing & Scanning

In real compilers the recognizer is split into two
phases

Scanner: translate input characters to tokens
Also, report lexical errors like illegal characters and illegal
symbolssymbols

Parser: read token stream and reconstruct the
derivation

Procedural interface – ask the scanner for new tokens when
needed

Scanner Parsersource tokens

11/19/2008

Scanner Parser

S E lScanner Example

Input text
// this statement does very little
if () 42if (x >= y) y = 42;

Token Stream

IF LPAREN ID(x) GEQ ID(y)

RPAREN ID(y) BECOMES INT(42) SCOLON

Notes: tokens are atomic items, not character strings;
comments are not tokenscomments are not tokens

P E lParser Example

Token Stream Input Abstract Syntax Tree
IF LPAREN ID(x) ifStmtIF LPAREN ID(x)

GEQ ID(y) RPAREN

ID(y) BECOMES

ifStmt

>= assign
ID(y) BECOMES

INT(42) SCOLON ID(x) ID(y) ID(y) INT(42)

Why Separate the Scanner andWhy Separate the Scanner and
Parser?

Simplicity & Separation of Concerns
Scanner hides details from parser (comments,
whitespace, etc.)
Parser is easier to build; has simpler input
stream (tokens)stream (tokens)

Efficiency
S i l f t d iScanner can use simpler, faster design

(But still often consumes a surprising amount of
the compiler’s total execution time)p)

11/19/2008

T kTokens

Idea: we want a distinct token kind (lexical
class) for each distinct terminal symbol in
the programming language

Examine the grammar to find these
Some tokens may have attributes

Examples: integer constant token will have
th t l i t (17 42) tt ib tthe actual integer (17, 42, …) as an attribute;
identifiers will have a string with the actual id

11/19/2008

Typical Tokens in ProgrammingTypical Tokens in Programming
Languages

Operators & Punctuation
+ - * / () { } [] ; : :: < <= == = != ! …
Each of these is a distinct lexical classEach of these is a distinct lexical class

Keywords
if while for goto return switch void …
Each of these is also a distinct lexical class (not a string)Each of these is also a distinct lexical class (not a string)

Identifiers
A single ID lexical class, but parameterized by actual id

Integer constants
A single INT lexical class, but parameterized by int value

Other constants etcOther constants, etc.

11/19/2008

P i i l f L t M t hPrinciple of Longest Match

In most languages, the scanner should pick the
longest possible string to make up the next
token if there is a choicetoken if there is a choice
Example

return foobar != hohum;;

should be recognized as 5 tokens

RETURN ID(foobar) NEQ ID(hohum) SCOLON

not more (i.e., not parts of words or identifiers, or !
and = as separate tokens)

RETURN ID(foobar) NEQ ID(hohum) SCOLON

p)

11/19/2008

Formal Languages & AutomataFormal Languages & Automata
Theory (in one slide)

Alphabet: a finite set of symbols
String: a finite, possibly empty sequence of symbols
from an alphabetp
Language: a set, often infinite, of strings
Finite specifications of (possibly infinite) languages

Automaton – a recognizer; a machine that accepts all strings inAutomaton a recognizer; a machine that accepts all strings in
a language (and rejects all other strings)
Grammar – a generator; a system for producing all strings in
the language (and no other strings)

A ti l l b ifi d b diff tA particular language may be specified by many different
grammars and automata
A grammar or automaton specifies only one language

11/19/2008

R l E i d FARegular Expressions and FAs

The lexical grammar (structure) of most
programming languages can be specified p g g g g p
with regular expressions

Aside: Difficulties with Fortran, othersAside: Difficulties with Fortran, others
Tokens can be recognized by a
deterministic finite automatondeterministic finite automaton

Can be either table-driven or built by hand
based on lexical grammarbased on lexical grammar

11/19/2008

R l E iRegular Expressions

Defined over some alphabet Σ
For programming languages, commonlyFor programming languages, commonly
ASCII or Unicode

If re is a regular expression, L(re) is theIf re is a regular expression, L(re) is the
language (set of strings) generated by re

11/19/2008

Fundamental REsFundamental REs

re L(re) Notes

a { a } Singleton set, for each a in Σ

ε { ε } Empty string

∅

ε { ε } Empty string

{ } Empty language

11/19/2008

O ti REOperations on REs

re L(re) Notes

L()L() C t tirs L(r)L(s) Concatenation

r|s L(r) L(s) Combination (union)∪

r* L(r)* 0 or more occurrences
(Kleene closure)(Kleene closure)

Precedence: * (highest), concatenation, | (lowest)
Parentheses can be used to group REs as needed

11/19/2008

g p

Abb i tiAbbreviations

The basic operations generate all possible regular
expressions, but there are common abbreviations
used for convenience Typical examples:

Abbr. Meaning Notes

used for convenience. Typical examples:

r+ (rr*) 1 or more occurrences

r? (r | ε) 0 or 1 occurrence

[a-z] (a|b|…|z) 1 character in given range

[abxyz] (a|b|x|y|z) 1 of the given characters[abxyz] (a|b|x|y|z) 1 of the given characters

11/19/2008

ExamplesExamples

re Meaning
+ single + character
! single ! character
= single = character
!= 2 character sequence
<= 2 character sequence
hogwash 7 character sequence

11/19/2008

More ExamplesMore Examples

re Meaning

[abc]+[]

[abc]*

[0-9]+

[1-9][0-9]*[1 9][0 9]

[a-zA-Z][a-zA-Z0-9_]*

11/19/2008

Abb i tiAbbreviations

Many systems allow abbreviations to
make writing and reading definitions easierg g

name ::= re

Restriction: abbreviations may not be circular
(recursive) either directly or indirectly() y y

11/19/2008

E lExample

Possible syntax for numeric constants

digit ::= [0-9]
digits ::= digit+digits ::= digit+
number ::= digits (. digits)?

([E] (|)? di it) ?([eE] (+ | -)? digits) ?

11/19/2008

R i i RERecognizing REs

Finite automata can be used to recognize
strings generated by regular expressions
Can build by hand or automatically

Not totally straightforward, but can be done
systematicallysystematically
Tools like Lex, Flex, and JLex do this
automatically, given a set of REsy, g
Even if you don’t use this explicitly, it is a good
way to think about the problem

11/19/2008

Fi it St t A t t (FSA)Finite State Automaton (FSA)
A finite set of statesA finite set of states

One marked as initial state
One or more marked as final states
States sometimes labeled or numbered

A t f t iti f t t t t tA set of transitions from state to state
Each labeled with symbol from Σ, or ε

Operate by reading input symbols (usually characters)
Transition can be taken if labeled with current symbolTransition can be taken if labeled with current symbol
ε-transition can be taken at any time

Accept when final state reached & no more input
Scanner slightly different – accept longest match each timeScanner slightly different accept longest match each time
called, even if more input; i.e., run the FSA each time the
scanner is called

Reject if no transition possible or no more input and not
in final state (DFA)in final state (DFA)

11/19/2008

E l FSA f “ t”Example: FSA for “cat”

ta tc

11/19/2008

DFA NFADFA vs NFA

Deterministic Finite Automata (DFA)
No choice of which transition to take under any
condition

Non-deterministic Finite Automata (NFA)
Choice of transition in at least one case
Accept - if some way to reach final state on given
inputinput
Reject - if no possible way to final state

11/19/2008

FA i SFAs in Scanners

Want DFA for speed (no backtracking)
Conversion from regular expressions toConversion from regular expressions to
NFA is easy
There is a well defined procedure forThere is a well-defined procedure for
converting a NFA to an equivalent DFA

S f l l il t tb k fSee formal language or compiler textbooks for
details

11/19/2008

Example: DFA for hand-writtenExample: DFA for hand written
scanner

Idea: show a hand-written DFA for some typical
programming language constructs

Then use to construct hand-written scanner
Setting: Scanner is called whenever the parser
needs a new token

Scanner stores current position in input file
St ti th DFA t i th l tStarting there, use a DFA to recognize the longest
possible input sequence that makes up a token and
return that token

11/19/2008

S DFA E l (1)Scanner DFA Example (1)
whitespace

0

whitespace
or comments

Accept EOF
end of input

1

Accept LPAREN
(

2

)
Accept RPAREN

)
3

Accept SCOLON
;

4

11/19/2008

p4

S DFA E l (2)Scanner DFA Example (2)

Accept NEQ
! 65 =

Accept NEQ6

Accept NOT7

5

other

Accept LEQ
< 98 =

p Q

Accept LESS10
other

11/19/2008

S DFA E l (3)Scanner DFA Example (3)

[0-9] 11
[0-9]

Accept INT12

11

other

11/19/2008

S DFA E l (4)Scanner DFA Example (4)

[a-zA-Z] 13
[a-zA-Z0-9_]

Accept ID or keyword14

13

other

Strategies for handling identifiers vs keywords
Hand-written scanner: look up identifier-like things in table of keywordsHand written scanner: look up identifier like things in table of keywords
to classify (good application of perfect hashing)
Machine-generated scanner: generate DFA with appropriate
transitions to recognize keywords

Lots ’o states but efficient (no extra lookup step)Lots o states, but efficient (no extra lookup step)

11/19/2008

Implementing a Scanner byImplementing a Scanner by
Hand – Token Representation

A token is a simple, tagged structure
public class Token {

public int kind; // token’s lexical classp ;
public int intVal; // integer value if class = INT
public String id; // actual identifier if class = ID
// lexical classes
public static final int EOF = 0; // “end of file” token
public static final int ID = 1; // identifier, not keyword
public static final int INT = 2; // integer

bli t ti fi l i t LPAREN 4public static final int LPAREN = 4;
public static final int SCOLN = 5;
public static final int WHILE = 6;
// etc etc etc// etc. etc. etc. …

11/19/2008

Si l S E lSimple Scanner Example
// global state and methods

static char nextch; // next unprocessed input character

// advance to next input char
void getch() { … }

// skip whitespace and comments
void skipWhitespace() { … }

11/19/2008

S tT k () th dScanner getToken() method
// return next input token
public Token getToken() {
Token result;

skipWhiteSpace();

if (no more input) {
result = new Token(Token EOF); return result;result = new Token(Token.EOF); return result;

}

switch(nextch) {
case '(': result = new Token(Token LPAREN); getch(); return result;case (: result = new Token(Token.LPAREN); getch(); return result;
case ‘)': result = new Token(Token.RPAREN); getch(); return result;
case ‘;': result = new Token(Token.SCOLON); getch(); return result;

// etc// etc. …

11/19/2008

tT k () (2)getToken() (2)
case '!': // ! or !=

getch();
if (nextch == '=') {

result = new Token(Token NEQ); getch(); return result;result = new Token(Token.NEQ); getch(); return result;
} else {

result = new Token(Token.NOT); return result;
}

case '<': // < or <=
getch();
if (nextch == '=') {

result = new Token(Token LEQ); getch(); return result;result = new Token(Token.LEQ); getch(); return result;
} else {

result = new Token(Token.LESS); return result;
}

// etc// etc. …

11/19/2008

tT k () (3)getToken() (3)

case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':

// integer constant
String num = nextch;
getch();
while (nextch is a digit) {

num = num + nextch; getch();num num nextch; getch();
}
result = new Token(Token.INT, Integer(num).intValue());
return result;

…

11/19/2008

tT k (4)getToken (4)
case 'a': … case 'z':
case 'A': … case 'Z': // id or keyword

string s = nextch; getch();
while (nextch is a letter, digit, or underscore) {

s = s + nextch; getch();
}
if (s is a keyword) {if (s is a keyword) {

result = new Token(keywordTable.getKind(s));
} else {

result = new Token(Token ID s);result = new Token(Token.ID, s);
}
return result;

11/19/2008

Alt tiAlternatives

Use a tool to build the scanner from the
(re) grammar() g

Often can be more efficient than hand-coded!
Build an ad-hoc scanner using regularBuild an ad-hoc scanner using regular
expression package in implementation
languagelanguage

Ruby, Perl, Java, many others.

11/19/2008

