
CSE 413 Autumn 2008

Introduction to Ruby

Credit: Dan Grossman, CSE341

Wh R b ?Why Ruby?

Because:
Pure object-oriented languagePure object oriented language

Interesting, not entirely obvious implications
Interesting design decisions (compare Java)g g (p)

Particularly type system, mixins, etc.

Interesting, but not our focusInteresting, but not our focus
Scripting language
RAILS and other frameworksRAILS and other frameworks

G tti R bGetting Ruby

Link to www.ruby-lang.org/en on course
web. Documentation & downloads
Implementations:

Windows: get the “one-click installer”Windows: get the one-click installer
OS X: Ruby 1.8 is part of developer tools
Linux: Should be available from your distroLinux: Should be available from your distro.
Be sure to include the irb interactive
interpreter too.interpreter too.

R bRuby

Pure object-oriented: all values are objects
Contrast w/Java primitive vs reference typesContrast w/Java primitive vs reference types

Class-based
Dynamically TypedDynamically Typed

vs static typing in Java
Convenient reflection

L C dLanguages Compared

One way to get an overview of what these
mean and how other languages relateg g

dynamically typed statically typed

functional Scheme ML (not in 413)

object-oriented Ruby Java

R b S llt lk (1)Ruby vs Smalltalk (1)

Smalltalk is the classic example of a pure
OO, class-based, dynamically-typed , , y y yp
language

Basically unchanged since the 80’sBasically unchanged since the 80 s
Tiny language, regular, can learn whole thing
Integrated into a powerful malleable GUIIntegrated into a powerful, malleable, GUI
environment
Uses blocks (closures) for control structuresUses blocks (closures) for control structures

R b S llt lk (2)Ruby vs Smalltalk (2)

Ruby
Large language, “why not” attitude

“make programmers happy”
Scripting language, minimal syntax
Huge library (strings, regexps, RAILS)
Mixins (somewhere between Java interfaces
and C++ multiple inheritance very neat)and C++ multiple inheritance – very neat)
Blocks and libraries for control structures and
functional-programming idiomsfunctional programming idioms

R b K Id (1)Ruby Key Ideas (1)

Everything is an object (with constructor,
fields, methods),)
Every object has a class, which
determines how it responds to messagesdetermines how it responds to messages
Dynamic typing (everything is an object)
D i di t h (lik J l t)Dynamic dispatch (like Java; later)
Sends to self (same as this in Java)

R b K Id (2)Ruby Key Ideas (2)

Everything is “dynamic”
Evaluation can add/remove classes,
add/remove methods, add/remove fields, etc.

Blocks are almost first-class anonymous
f i (l)functions (later)

Can convert to/from real lambdas
And a few C/Java-like features (loops,
return,etc.)

N V i bl D l tiNo Variable Declarations

If you assign to a variable, it’s mutation
If the variable is not in scope, it is p ,
created(!) (Don’t mispell things!!)

Scope is the current method
Same with fields: if you assign to a field,
that object has that field

So different objects of the same class can
have different fields(!)

N i C tiNaming Conventions

Used to distinguish kinds of variables
Constants and ClassNames start with capsConstants and ClassNames start with caps
local_vars and parameters start w/lower case
@instance variables@instance_variables

@thing = thing sets and instance variable from a
local name – and creates @thing if it doesn’t exist!

@@class_variables
$global $VARS $CONSTANTS

Vi ibilit P t ti ?Visibility. Protection?

Fields are inaccessible outside instance
Define accessor/mutator methods as neededDefine accessor/mutator methods as needed

Methods are public, protected, private
protected: only callable from class or subclassprotected: only callable from class or subclass
object
private: only callable from selfprivate: only callable from self
Both of these differ from Java

Unusual syntaxUnusual syntax
(add to this list as you discover things)

Newlines often matter – example: don’t need
semi-colon when a statement ends a line
Message sends (function calls) often don’t needMessage sends (function calls) often don t need
parentheses
Infix operations are just message sends
Can define operators including =, []
Classes don’t need to be defined in one place
Loops conditionals classes methods are self-Loops, conditionals, classes, methods are self-
bracketing (end with “end”)

Actually not unusual except to programmers who
have too much prior exposure to C/Java etchave too much prior exposure to C/Java, etc.

A bit b t E iA bit about Expressions

Everything is an expression and produces a
value
nil means “nothing” but it is an object (annil means “nothing”, but it is an object (an
instance of class NilClass)
nil and false are false in a boolean context;nil and false are false in a boolean context;
everything else is true (including 0)
‘strings’ are taken literally (almost)
“strings” allow more substitutions

including #{expressions}

