
CSE 413 Autumn 2008

Ruby Duck Typing, 
Classes & Inheritance



O iOverview

Next big topic is typing, classes, and 
inheritance
But first, a couple of useful things

Shorthand for getters/settersShorthand for getters/setters
An example of an “each” iterator
A little more about blocks vs ProcsA little more about blocks vs. Procs



G tt /S ttGetters/Setters

Recall that all 
instance variables are 

class PosRat
def initialize(num, denom=1)
@num = num
@d dreally private – need 

to define methods to 
access them

@denom = denom
end

def numaccess them def num
@num

end
def num=(value)
@num = value

end
…



A Alt tiAn Alternative

Was:
def num

Instead, can use

@num
end

attr_reader :num, :denom

def denom
@denom

end
There is a similar 
attr writer shortcutend

…
attr_writer shortcut



It t E lIterator Example

Suppose we want to define a class of 
Sequence objects that have a from, to, q j , ,
and step, and contain numbers x such that

from <= x <= to, andfrom  x  to, and
x = from + n*step for integer value n

(Credit: Ruby Programming Language, Flanagan & Matsumoto)



S Cl & C t tSequence Class & Constructor

class Sequence
# mixin all of the methods in Enumerable
include Enumerable

def initialize(from, to, step)
@from, @to, @step = from, to, step

dend
…



S h th dSequence each method

To add an iterator to Sequence and make it also 
work with Enumerable, all we need is this:
d f hdef each
x = @from
while x <= @to@
yield x
x += @step

dend
end



Bl k & P R i it dBlocks & Procs Revisited

Blocks are only usable in the immediate 
context of their caller
thing each { | x | do something with(x) }thing.each { | x | do_something_with(x) }

Procs are real “first-class” objects
Create with lambda or Proc.newCreate with lambda or Proc.new
Proc instances all have a “call” method
Can be stored in fields, passed as arguments, 
etcetc.
This is exactly a closure



T i R bTypes in Ruby

Ruby is dynamically typed – everything is 
an objectj
Only notion of an object’s “type” is what 
messages it can respond tomessages it can respond to

i.e., whether it has methods for a particular 
messagemessage
This can change dynamically for either all 
objects of a class or for individual objectsobjec s o a c ass o o d dua objec s



D k T iDuck Typing

“If it walks like a duck and talks like a 
duck, it must be a duck”,

Even if it isn’t
All that matters is how an object behavesAll that matters is how an object behaves

(i.e, what messages it understands)



Th ht E i t (1)Thought Experiment (1)

What must be true about x for this method 
to work?

def foo xdef foo x
x.m + x.n

endend



Th ht E i t (2)Thought Experiment (2)

What is true about x?
x.m + x.n

Less than you might think
x must have 0-argument methods m and ng
The object returned by x.m must have a + 
method that takes one argument
The object returned by x.n must have 
whatever methods are needed by x.m.+ (!)



D k T i T d ffDuck Typing Tradeoffs

Plus
Convenient, promotes code reusep
All that matters is what messages an object can 
receive

Minus
“Obvious” equivalences don’t hold: x+x, 2*x, x*2
May expose more about an object than might be 
desirable (more coupling in code)



Cl & I h itClasses & Inheritance

Ruby vs Java:
Subclassing in Ruby is not about type checking 
(b f d i t i )(because of dynamic typing)
Subclassing in Ruby is about inheriting methods

Can use super to refer to inherited codeCan use super to refer to inherited code
See examples in points.rb

ThreeDPoint inherites methods x and yThreeDPoint inherites methods x and y
ColorPoint inherits distance methods



O idiOverriding

With dynamic typing, inheritance alone is 
just avoiding cut/pastej g p
Overriding is the key difference

When a method in a superclass makes a selfWhen a method in a superclass makes a self
call, it resolves to a method defined in the 
subclass if there is one
Example: distFromOrigin2 in PolarPoint



R b Di iRuby Digression

Since we can add/change methods on the fly, 
why use a subclass?
Instead of class ColorPoint why not just addInstead of class ColorPoint, why not just add 
a color field to Point?

Can’t do this in Java
Can do it in Ruby, but it changes all Point 
instances (including subclasses), even existing 
onesones
Pro: now all Point classes have a color
Con: Maybe that breaks something else


