Ruby Duck Typing,

Classes & Inheritance

Overview

m Next big topic Is typing, classes, and
Inheritance
m But first, a couple of useful things
Shorthand for getters/setters
An example of an “each” iterator
A little more about blocks vs. Procs

Getters/Setters
class PosRat
" _Reca” that a_” def initialize(num, denom=1)
Instance variables are @num = num
- . @denom = denom
really_prlvate need end
to define methods to
access them def num
@num
end

def num=(value)
@num = value
end

An Alternative

m \Was: m Instead, can use
def num
@num attr_reader :num, :.denom
end
def denom
@denom m There is a similar

end attr_writer shortcut

lterator Example

m Suppose we want to define a class of
Seqguence objects that have a from, to,
and step, and contain numbers X such that

from <= x <=to, and
X = from + n*step for integer value n

(Credit: Ruby Programming Language, Flanagan & Matsumoto)

" J
Seqguence Class & Constructor

class Sequence
mixin all of the methods in Enumerable
Include Enumerable

def initialize(from, to, step)
@from, @to, @step = from, to, step
end

" J
Seguence each method

m To add an iterator to Sequence and make it also
work with Enumerable, all we need is this:

def each
X = @from
while x <= @to
yield x
X += @step
end
end

" A
Blocks & Procs Revisited

m Blocks are only usable in the immediate
context of their caller
thing.each { | x | do_something_with(x) }
m Procs are real “first-class” objects
Create with lambda or Proc.new
Proc instances all have a “call” method

Can be stored in fields, passed as arguments,
etc.

This Is exactly a closure

Types In Ruby

m Ruby is dynamically typed — everything is
an object

m Only notion of an object’s “type” is what
messages It can respond to

l.e., whether it has methods for a particular
message

This can change dynamically for either all
objects of a class or for individual objects

Duck Typing

m “If it walks like a duck and talks like a
duck, it must be a duck”

Even ifitisn’t
All that matters is how an object behaves
m (I.e, what messages it understands)

Thought Experiment (1)

m \What must be true about x for this method
to work?

def foo x
X.m + X.n
end

"
Thought Experiment (2)

m \What Is true about x?
X.m + X.Nn

m Less than you might think
X must have 0-argument methods m and n

The object returned by x.m must have a +
method that takes one argument

The object returned by x.n must have
whatever methods are needed by x.m.+ (!)

Duck Typing Tradeoffs

m Plus
Convenient, promotes code reuse

All that matters is what messages an object can
receive

m Minus
“Obvious” equivalences don’t hold: x+x, 2*x, x*2

May expose more about an object than might be
desirable (more coupling in code)

" A
Classes & Inheritance

m Ruby vs Java:

Subclassing in Ruby is not about type checking
(because of dynamic typing)

Subclassing in Ruby is about inheriting methods
m Can use super to refer to inherited code
m See examples in points.rb

ThreeDPoint inherites methods x and y
ColorPoint inherits distance methods

Overriding

m With dynamic typing, inheritance alone Is
just avoiding cut/paste

m Overriding Is the key difference

When a method in a superclass makes a self
call, It resolves to a method defined in the
subclass If there Is one

Example: distFromOrigin2 in PolarPoint

" J
Ruby Digression

m Since we can add/change methods on the fly,
why use a subclass?

m Instead of class ColorPoint, why not just add
a color field to Point?

Can’t do this in Java

Can do it in Ruby, but it changes all Point
Instances (including subclasses), even existing
ones

Pro: now all Point classes have a color
Con: Maybe that breaks something else

