
CSE 413 Autumn 2008

Objects & Dynamic
Dispatch

PlPlan

We’ve learned a great deal about functional
and object-oriented programming
Now,

Look at semantics and principles more carefullyp p y
Look at O-O and functional programming – what
are the essential differences and similarities

L k U R l (1)Look-Up Rules (1)

Key idea in any language: how are
“symbols” (names, identifiers) resolvedy (,)
Functional programming – first-class
functions lexical scope immutability (i efunctions, lexical scope, immutability (i.e.,
don’t use set!)

L k U R l i R b (2)Look-Up Rules in Ruby (2)

In Ruby, use syntactic distinctions
instance fields (@x), class fields (@@x) vs(@) (@@)
method/block variables and method names (x)

No shadowing of fields, unlike Java
Can shadow method names with variables

So: is m+2 a variable lookup or a method call?p
We won’t worry about this for the most part

“Fi t Cl ”“First-Class”
If something can be computed, stored in fields/
variables, used as arguments, returned as results,
we say it is “first-class”e say t s st c ass
All objects in Ruby are first-class

& most things are objects
Thi th t tThings that are not:

Message names
can’t write x.(if b then m else n end)

Blocks (but procs are)
Argument lists

V i bl L k i R bVariable Lookup in Ruby

To resolve a variable (e.g., x)
Inside a code block { |x| e }, x resolves to local { | | }
variable (the argument)

Not strictly true in Ruby 1.8 & earlier if x already exists
in the surrounding blockin the surrounding block

Else x resolves to x defined in enclosing method
Lexical scope, as in SchemeLexical scope, as in Scheme
Implies Ruby implementation needs to build closures at
least some of the time

M L k i R bMessage Lookup in Ruby

To resolve a message (e.g., m)
All messages are sent to an object (e.g., e.m), so
first evaluate e to get object objfirst evaluate e to get object obj
Get class of obj (e.g., A)

Every object has a class and carries a reference to the
corresponding class objectcorresponding class object

If m defined in A (instance methods first, then
class methods), call it, otherwise recursively look
in superclassesin superclasses

Mixins complicate this somewhat (later)
If no match up the chain, method not found error

Wh t i lf?What is self?

Evaluation always takes place in an
environment
self is always bound to some object in any
environmentenvironment

Determines resolution for self and super

OOP P i i lOOP Principles

Inheritance and override
Private fields (just abstraction)
The semantics of message send

To send m to obj means evaluate body of method
m resolves to in environment where parametersm resolves to in environment where parameters
map to arguments and self is bound to obj
This is exactly “late binding”, “dynamic dispatch”,
“virtual function call”virtual function call

And why superclass code can call code defined in
subclasses

A E l (S h)An Example (Scheme)

Suppose this is defined at top-level
(define (even x) (if (= x 0) #t (odd (- x 1))))
(define (odd x) (if (= x 0) #f (even (- x 1))))

Suppose we evaluate (odd 42) in an inner pp ()
scope where even is defined to be

(define (even x) (= 0 (modulo x 2)))
Nothing changes – odd calls original even
(static scope)

E l (R b S b l)Example (Ruby – Subclasses)
class A
def even x
if x == 0 then true else

class B < A
def even x

if x == 0 then true else
odd(x-1) end

end
d f dd

x % 2 == 0
end

ddef odd x
if x == 0 then false else

even(x-1) end

end
Now odd, as well as
even is changed for()

end
end

even, is changed for
instances of B

P ti L t Bi diPerspectives on Late Binding

More complicated semantics
Ruby without self is easier to define andRuby without self is easier to define and
reason about
Seems “natural” only because you have had y y
months of this in previous courses
Hard to reason about code – “which method is
really called here?”

P ti L t Bi diPerspectives on Late Binding

But often an elegant pattern for reuse
OO without self is not OOOO without self is not OO
Fits well with “object analogy”
Can make it easier to add/localize specializedCan make it easier to add/localize specialized
code even when other code wasn’t written to
be specialized

More reuse/abuse

L L l ViLower-Level View

A definition in one language is often a pattern
in another…
Can simulate late binding in Scheme easilyCan simulate late-binding in Scheme easily
enough
And it provides a mental model for howAnd it provides a mental model for how
objects and late binding are implemented

Naïve, but accurate view can give a way to
reason about programs even if “real”reason about programs, even if real
implementations contain more sophisticated
engineering

L t Bi di i S hLate Binding in Scheme

Key idea: extend all methods to take an
extra argument (i.e., self)g (,)
An object is a record (closure) holding
methods and fieldsmethods and fields
Self is passed as an explicit argument
everywhereeverywhere
Message resolution always uses self

I Thi R l?Is This Real?

It’s a fine pattern, but…
It doesn’t model Ruby, where methods can beIt doesn t model Ruby, where methods can be
added/removed dynamically and an object’s
class determines behavior

In the example we model “classless” objects
Space inefficient – duplicate methods
Time inefficient – method lookup needs to be
constant time in real systems

B tt E i i B tt R litBetter Engineering, Better Reality

To model classes, add a level of
indirection: all instances created by the y
same “constructor” share a list of methods

And for Ruby, we can change the listAnd for Ruby, we can change the list
Use better data structures (array or hash)
to get constant-time method dispatchto get constant time method dispatch

And add tricks so subclassing works

