
CSE 413 Autumn 2008

Interpreters and
Higher-Order Functions

Credit: CSE341 notes by Dan GrossmanCredit: CSE341 notes by Dan Grossman

I l ti LImplementing Languages

At a very high level there are 2 ways to
implement a language A

Write an interpreter in language B that reads,
analyzes, and immediately evaluates
programs written in language Aprograms written in language A
Write a compiler in language B that translates
a program written in language A into somea program written in language A into some
other language C (and have an
implementation of C available)

H k 4 I l t MUPLHomework 4: Implement MUPL

MUPL – “Made-Up Programming
Language”g g

Basically a small subset of Scheme
Most interesting feature: higher-orderMost interesting feature: higher order
functions

HW4 is to write an interpreter for thisHW4 is to write an interpreter for this
language

E di A LEncoding A Language

Suppose we want to process “-(2+2)”
Compilers and interpreters both read p p
(parse) linear program text and produce
an abstract syntax tree representation

Ideal for translating or direct interpretation
For example: (make-negate (make-add
(k t 2) (k t 2)))(make-const 2) (make-const 2)))

A parser turns the linear input into an AST

A I t tAn Interpreter

An interpreter: a “direct” implementation
created by writing out the evaluation rules y g
for the language in another language
For HW4:For HW4:

MUPL programs encoded in Scheme data
structures (use define-struct definitions instructures (use define struct definitions in
starter code)
Interpreter written in Schemee p e e e Sc e e

V i bl & E i tVariables & Environments

Languages with variables or parameters
need interpreters with environmentsp
“Environment”: a name -> value map

For MUPL names are “strings”For MUPL, names are strings
For MUPL, environment is an association list
– a list of (name value) pairsa list of (name value) pairs

Lookup function is in the starter code

E l tiEvaluation

The core of the interpreter is (eval-prog p)
Recursively evaluate program p in an initiallyRecursively evaluate program p in an initially
empty environment (function applications will
create bindings for sub-expressions)
Example: To evaluate addition, evaluate
subexpressions in the same environment,
then add the resulting values

Implementing Higher-OrderImplementing Higher Order
Functions

The magic: How is the right environment
available to make lexical scope working?p g
Lack of magic: implementation keeps it
aroundaround

Hi h O d F tiHigher-Order Funtions

Details
The interpreter has a “current environment”p
To evaluate a function expression (lambda, called
“fun” in MUPL)

Create a closure, which is a pair of the function and the
“current environment”

To apply a function (really to apply a closure)To apply a function (really to apply a closure)
Evaluate the function body but use the environment
from the closure instead of the “current environment”

Functions with MultipleFunctions with Multiple
Arguments

A MUPL simplification: functions can only
have a single (optional) parameter
Sounds like a restriction, but it isn’t really
Idea: rewrite multiple-argument functions as
hi h d f ti th t t k thigher-order functions that take an argument
and return a function to process the rest

Known as “currying” after the inventor HaskellKnown as currying after the inventor, Haskell
Curry

C i E lCurrying Example

Suppose we have: lambda (x y) (+ x y)
Application: ((lambda (x y) (+ x y)) 3 4)

Rewrite as:
lambda (x) (lambda (y) (+ x y))
Application:
(((lambda (x) (lambda (y) (+ x y))) 3) 4)

So multiple arguments only buy
convenience, but no additional power

