
CSE 413 Autumn 2008

Interfaces, Mixins, &
Multiple Inheritance

Credit: Dan Grossman, CSE341, Sp08

N & A tNews & Announcements
Final Exam: Thur., Dec. 11, 2:30, here

Review Wed., Dec 10, 4:30, CSE 403
Old exams on website nowOld exams on website now

Ignore details no longer part of the course, but several of the
old compiler questions are really about parsing & grammars,
which is fair game

In-class review & topic list this Friday
Assignment 7 due Thursday night 11 pm

Printouts due in class FridayPrintouts due in class Friday
NO LATE ASSIGNMENTS – even if you didn’t use
all of your late days

O iOverview

Object-oriented programming: essence is
inheritance, overriding, dynamic-dispatch, g, y p
What about multiple inheritance (>1
superclass)?superclass)?

When does it make sense?
What are the issues?What are the issues?

M d lModels

Multiple Inheritance: >1 superclass
Useful, but has issues (e.g., C++)(g)

Java-style interfaces: >1 type
Doesn’t apply to dynamically-typed languages; pp y y y yp g g ;
fewer problems than multiple inheritance

Mixins: >1 “source of methods”
Similarities to multiple inheritance – many of the
goodies with fewer(?) problems

M lti l I h itMultiple Inheritance

If single inheritance is so useful, why not
allow multiple superclasses?

Semantic and implementation complexities
Typing issues w/static typing

I it f l? SIs it useful? Sure:
Color3DPoint extends 3DPoint, ColorPoint

Naïve view: subclass has all fields andNaïve view: subclass has all fields and
methods of all superclasses

T DAG d Di dTrees, DAGs, and Diamonds

Class hierarchy forms a graph
Edges from subclasses to superclasses
Single inheritance a treeSingle inheritance: a tree
Multiple inheritance: a DAG

DiamondsDiamonds
With multiple inheritance, may be multiple ways
to show that A is a (transitive) subclass of B
If ll l t iti b l fIf all classes are transitive subclasses of e.g.
Object, multiple inheritance always leads to
diamonds

Multiple Inheritance:Multiple Inheritance:
Semantic Issues

What if multiple superclasses define the same
message m or field f ?

Cl i l A ti t C b A ti tC bClassic example: Artists, Cowboys, ArtistCowboys
Options for method m:

Reject subclass as ambiguous – but this is tooReject subclass as ambiguous but this is too
restrictive (esp. w/diamonds)
“Left-most superclass wins” – too restrictive (want
per method flexibility) + silent weirdnessper-method flexibility) + silent weirdness
Require subclass to override m (can use explicitly
qualified calls to inherited methods)

Multiple Inheritance:Multiple Inheritance:
Semantic Issues

Options for field f : One copy of f or multiple
copies?

Multiple copies: what you want if Artist::draw and
Cowboy::draw use inherited fields differently
Single copy: what you want for Color3dPointSingle copy: what you want for Color3dPoint
x and y coordinates

C++ provides both kinds of inheritancep
Either two copies always, or one copy if field
declared in same (parent) class

J St l I t fJava-Style Interfaces

In Java we can define interfaces and
classes can implement themp

Interface describes methods and types
Interface is a type – can have variables,Interface is a type can have variables,
parameters, etc. with that type
If class C implements interface I, then p ,
instances of C have type I but must define
everything in I (directly or via inheritance)

I t f ll b t TInterfaces are all about Types

In Java, we can have 1 immediate superclass
and implement any number of interfaces
Interfaces provide no methods or fields noInterfaces provide no methods or fields – no
duplication problems

If I1 and I2 both include some method m, ,
implementing class must provide it somehow

But this doesn’t allow what we want for
Color3DPoints or ArtistCowboysColor3DPoints or ArtistCowboys

No code inheritance/reuse possible

J I t f d R bJava Interfaces and Ruby

Concept is totally irrelevant for Ruby
We can already send any message to anyWe can already send any message to any
object (dynamic typing)
We need to get it right (can always ask an g g (y
object what messages it responds to)

I t f Ab t t ClInterfaces vs Abstract Classes
Interfaces are not needed in C++. Why?
C++ allows methods and classes to be abstract

Specified in class declaration but not provided inSpecified in class declaration but not provided in
implementation (same as Java)
Called pure virtual methods in C++

S l t d lti l b t t lSo a class can extend multiple abstract classes
Same as implementing interfaces

But if that’s all you need, you don’t need multipleBut if that s all you need, you don t need multiple
inheritance

Point to multiple inheritance is not just typing

Mi iMixins

A mixin is a collection of methods
No fields, constructors, instances, etc.

T i ll l ith i i ll 1Typically a language with mixins allows 1
superclass and any number of mixins

We’ve already seen this in RubyWe ve already seen this in Ruby
Bad news: less powerful than multiple inheritance
(what is in a class, what is in a mixin?)
Good news: Clear semantics, great for certain
idioms (Enumerate, Comparable using each, <=>)

