
CSE 413 Autumn 2008

Implementing Dynamic
Dispatch

D i Di t hDynamic Dispatch

Recall: In an object-oriented language, a
subclass can override (redefine) a method()
When a message is sent to an object, the
actual method called depends on the typeactual method called depends on the type
of the object, not the type of the variable
that references itthat references it
How?

C t l M d lConceptual Model

An object consists of
State (instance variables, …)
Behavior (methods, messages)

So we can implement an object as p j
something that contains data and
procedures
But… Not good engineering – multiple
copies of method code in each object

Att t #2Attempt #2

Instead of replicating the methods in each
object, include a set of pointers to the j , p
applicable methods
But Lots of duplicate pointers per objectBut… Lots of duplicate pointers per object

Att t #3Attempt #3

Instead of having method pointers in each
object, have one set of method pointers per
classclass

Each object contains a pointer to a “class object”
Method calls are indirect to the actual methods in
the class object

A little bit of time overhead per method call
Need some tweaks for something as dynamicNeed some tweaks for something as dynamic
as Ruby

D i Di t h i R bDynamic Dispatch in Ruby

Complicatons
Modules (mixins) as well as classesModules (mixins) as well as classes
Can add or change methods dynamically as
the program runsp g
Can include per-object methods as well as
per-class methods

R b D t St tRuby Data Structures

Every object has a pointer to its class
A class is represented by a “class object”

Every class object contains a hash table with method
names and code

Every class object has a pointer to its superclassEvery class object has a pointer to its superclass
Search for applicable methods starting in the
object and moving up

If you hit the top without finding it, “message not
understood”

C li tiComplications

Mixins
One object per mixin, searched after the class
object and before the superclass

Per-object methods
Define a “virtual class” of methods for that
object that is searched first

Wh t i th l f l bj t?What is the class of a class object?
Interesting question… left as an exercise

T f O O LTypes for O-O Languages

Java, C++, and others are strongly typed
Purpose of the type system: preventPurpose of the type system: prevent
certain kinds of runtime errors by compile-
time checks (i e static analysis)time checks (i.e., static analysis)

O O T S tO-O Type Systems

“Usual” guarantees
Program execution won’t

Send a message that the receiver doesn’t
understand
Send a message with the wrong number ofSend a message with the wrong number of
arguments

“Usual” loopholep
Type system doesn’t try to guarantee that a
reference is not null

T i d D i Di t hTyping and Dynamic Dispatch

The type system allows us to know in
advance what methods exist in each class,
and the potential type(s) of each object

Declared (static) type
Supertypes
Possible dynamic type(s) because of downcasts

Use this to engineer fast dynamic type lookup

Obj t L tObject Layout

Whenever we execute “new Thing(…)”
We know the class of Thing
We know what fields it contains (everything
declared in Thing plus everything inherited)

We can guarantee that the initial part ofWe can guarantee that the initial part of
subclass objects matches the layout of ones
in the superclassin the superclass

So when we up- or down-cast, offsets of inherited
fields don’t change

P Cl D t St tPer-Class Data Structures

As in Ruby, an object contains a pointer to a
per-class data structure

(But this need not be a first-class object in the
language)

Per class data structure contains a table ofPer-class data structure contains a table of
pointers to appropriate methods

Often called “virtual function table” or vtableOften called virtual function table or vtable
Method calls are indirect through the object’s
class’s vtable

Vt bl d I h itVtables and Inheritance

Key to making overriding work
Initial part of vtable for a subclass has theInitial part of vtable for a subclass has the
same layout as its superclass

So we can call a method indirectly through the
vtable using a known offset fixed at compile-time
regardless of the actual dynamic type of the object

Key point: offset of a method pointer is theKey point: offset of a method pointer is the
same, but it can refer to a different method in
the subclass, not the inherited onethe subclass, not the inherited one

