CSE 413: Programming Languages
and thelr Implementation

Hal Perkins
Autumn 2008

CSE 413 Au 08 - Introduction

Today’s Outline

e Administrative Info
e QOverview of the Course
e |Introduction to Scheme

CSE 413 Au 08 - Introduction

Staff

e Instructor
» Hal Perkins (perkins@cs.washington.edu)

e Teaching Assistant

» Laura Marshall
(Imarshl6@cs.washington.edu)

CSE 413 Au 08 - Introduction

Web Page

 All Iinfo iIs on the web page for CSE 413

(or at least will be once things are a bit further along...)

» http://www.cs.washington.edu/413
» also known as

http://www.cs.washington.edu/education/courses/413/08au

e Look there for schedules, contact information,

assignments, links to discussion boards and mailing
lists, etc.

CSE 413 Au 08 - Introduction

CSE 413 E-mail List

 |f you are registered for the course you will be
automatically registered.

o E-mall list is used for posting important
announcements by instructor and TAS

e You are responsible for anything sent here
» Mail to this list Is sent to your uwnetid

CSE 413 Au 08 - Introduction

CSE 413 Discussion Board

e The course has a Catalyst GoPost message
board

o Use It to stay In touch outside of class
» Staff will watch and contribute too

o Use:

» General discussion of class contents

» Hints and ideas about assignments (but not
detailed code or solutions)

» Other topics related to the course

CSE 413 Au 08 - Introduction

Course Computing

e College of Arts & Sciences Instructional Computing Lab
(aka Math Science Computing Labs)

» Basement of Communications building: B-022/027
» http://depts.washington.edu/aslab

e Or work from home — all software available free
» See links on the course web

CSE 413 Au 08 - Introduction 7

Grading: Estimated Breakdown:

e Approximate Grading:

» Homework + Project: 55%

\Y4

» Midterm: 15% (TBA, in class)
» Final: 25% (Thursday December 11
» Participation 5% 2:30-4:20)

e Assignments:

» Weights may differ to account for relative difficulty of
assignments

» Assignments will be a mix of shorter written exercises
and longer programming projects

CSE 413 Au 08 - Introduction

Deadlines & Late Policy

o Assignments generally due Thursday evenings
via the web

» Exact times and dates will be given for each
assignment

 Late policy: 4 late days per person
» At most 2 on any single assignment
» Used only in integer units

» For group projects, both students must have late
days available and both are charged if used

CSE 413 Au 08 - Introduction

Academic (Mis-)Conduct

* You are expected to do your own work
» EXxceptions (group work), if any, will be clearly announced

e Things that are academic mis-conduct:

» Sharing solutions, doing work for or accepting work from
others

» Searching for solutions on the web

» Consulting solutions to assignments or projects from
previous offerings of this course

 Integrity is a fundamental principle in the academic
world (and elsewhere) — we and your classmates trust
you, don’t abuse that trust

CSE 413 Au 08 - Introduction 10

Homework for Today!!

1) Assignment #1: (posted in the next day or so)

2) Information Sheet (aka Assignment #0): Bring
to lecture on Friday Sept 26

3) Download and Install Dr. Scheme (and play
with it!)
4) Reading: See “Scheme Resources” on Web page

CSE 413 Au 08 - Introduction 11

Reading

* No required text — we’ll make some suggestions as we go along
o Other references available from course web page

e Check “Functional Programming & Scheme” Link for:
» More notes on Scheme
» Revised® Report on the Algorithmic Language Scheme (R5RS)
e Section 2

» Link to Structure and Interpretation of Computer Programs (Abelson,
Sussman, & Sussman)
e Sections 1-1.1.5

CSE 413 Au 08 - Introduction 12

Tentative Course Schedule

Week 1: Scheme
Week 2: Scheme
Week 3: Scheme
Week 4: Scheme wrapup/intro to Ruby

Weeks 5-6: Object-oriented programming and Ruby; scripting
languages

Weeks 7-9: Language implementation, compilers and
Interpreters

Week 10: garbage collection; special topics

CSE 413 Au 08 - Introduction 13

What is this course about?

* Programming Languages
e Their Implementation

CSE 413 Au 08 - Introduction

14

Why Study Programming Languages?

« Become a better software engineer
» Understand how to use language features

» Appreciate implementation issues

 Better background for language selection
» Familiar with range of languages
» Understand Issues/advantages/disadvantages

» Better able to learn languages:

» You will learn many over your career

CSE 413 Au 08 - Introduction

15

Why Study Compilers/Interpreters?

 Better understanding of implementation issues
In programming languages:
» How Is “this” implemented?
» Why does “this” run so slowly?

e Translation appears many places:
» Processing command line parameters

» Converting files/programs from one
language/format to another

CSE 413 Au 08 - Introduction

16

Why are there so many (1,000s)
Programming Languages?

 Evolution: random coding -> structured
programming -> OO programming
o Special Purposes: Lisp for symbols, Snobol

for strings, C for systems, Prolog for
relationships

* Personal Preference: Programmers have their
own personal tastes

CSE 413 Au 08 - Introduction 17

What Makes a Programming Language
Successful?

EXxpressive power (more suited to a particular
task)

Easy to use (teaching/learning)

Ease of Iimplementation (easy to write a
compiler/interpreter for)

Good compilers (Fortran)
Economics, patronage (Cobol, Ada)

CSE 413 Au 08 - Introduction

18

 Donald Knuth:

» Programming is the art of telling another
human being what one wants the computer to
do.

CSE 413 Au 08 - Introduction

19

Programming Domains

 Scientific applications:

» Using the computer as A large calculator
» FORTRAN, mathematica

* Business applications:

» Data processing and business procedures
» COBOL, some PL/I, spreadsheets

e Systems programming:
» Bullding operating systems and utilities
» C, c++

CSE 413 Au 08 - Introduction

20

Programming Domains (2)

 Parallel programming:
» Parallel and distributed systems
» Ada, CSP, Erlang, functional map/reduce (Google)

 Artificial intelligence:
» Uses symbolic rather than numeric computations
» LIists as main data structure, flexibility (code = data)
» Lisp 1959, prolog 1970s

e Scripting languages:
» A list of commands to be executed

» UNIX shell programming, awk, tcl, perl

CSE 413 Au 08 - Introduction

21

Programming Domains (3)

e Education:

» Languages designed to facilitate teaching
» Pascal, BASIC, logo

e Special purpose:

» Other than the above...
Simulation
Specialized equipment control
String processing
Visual languages

>

v

>

\Y4

>

v

>

v

CSE 413 Au 08 - Introduction

22

Why Scheme?

* The simplicity of the language lets us work on
problem solving, rather than just syntax issues

 Structure of the language lets us see that the
structure of C/Java/Basic Is not the only way
to express problem solutions

e Stretch our brains

» study more than one language paradigm and study
the relationship between design paradigms

» Recursive programming is an essential part of a
programmer’s toolkit

CSE 413 Au 08 - Introduction 23

A diskarea.scm - Drscheme

File Edit Show Language Scheme Special Help

dizkarea.zcm

[define ...)

=10 x|

| ‘:; Step I | Q Check Synkax I | ’ Execute I | @ Breakl

s A wery simple exawple of using Scheme
; Define a walue for PI

jdefine pi 3.1415926535)

; Define & function that calculates the

[define [(area-of-disk r)
[* pi (¥ r rj))

Kil

area of a disk

B

Definitions window

enter programs here

.

YWelcome to DrScheme, version 205.
Language: Standard (RSRS)
> 128

125

= i+ 128 128)

256

> larea-of-disk 1)
3.1415926535

» [area-of-disk pi)
31.006276677564115

= (* pi pi pi)
31.00627667764115

>

Interactions window
enter expressions here

2:26

Simn

.
2
Read)write nok running

Definitions window

» Define programs in the definitions window

» Save the contents of the window to a file using
menu Item file - save definitions as ...

Load existing files with menu item file - open

Execute the contents of the definitions window by
clicking on the “run" button

Check and highlight syntax by clicking on the
"check syntax" button

Re-Indent all with control-i

>

v

>

v

>

v

>

v

CSE 413 Au 08 - Introduction 25

Interactions Window

o Evaluate simple expressions directly in the
Interactions window

 Position the cursor after the ">", then type In
your expression

» DrScheme responds by evaluating the expression
and printing the result

» recall previous expression with escape-p

e Expressions can reference symbols defined
when you executed the Definitions window

CSE 413 Au 08 - Introduction

26

Think functionally

e Procedural programming

» The order of assignments changes the operation of the
program because the state Is changed by assignment

* Functional programming (Scheme)

» Computation is a sequence of function definitions and
evaluations

» Core Is free of side-effects (assignment)

» Referential transparency: An expression will always
yield the same value when evaluated

* Not true In presence of side-effects

CSE 413 Au 08 - Introduction 27

Primitive Expressions

e constants
» Integer .
» rational :
» real :
» poolean :

o variable names (symbols)

» Names can contain almost any character except
white space and parentheses

» Stick with simple names like value, x, iter, ...

CSE 413 Au 08 - Introduction

28

Compound Expressions

 Either a combination or a special form

1. Combination : (operator operand operand ...

» there are quite a few pre-defined operators

» We can define our own operators

2. Special form
» keywords in the language
» eg, define, If, cond

CSE 413 Au 08 - Introduction

29

Combinations

(operator operand operand ...)

this is prefix notation, the operator comes first
a combination always denotes a procedure application

the operator is a symbol or an expression, the applied
procedure is the associated value
» +, -, abs, my-function

» characters like * and + are not special; if they do not stand
alone then they are part of some name

CSE 413 Au 08 - Introduction 30

Evaluating Combinations

e To evaluate a combination
» Evaluate the subexpressions of the combination

» Apply the procedure that is the value of the leftmost
subexpression (the operator) to the arguments that are
the values of the other subexpresions (the operands)

e Examples (demo)

CSE 413 Au 08 - Introduction 31

Evaluating Special Forms

o Special forms have unique evaluation rules
 (define x 3) Is an example of a special
form; 1t Is not a combination

» the evaluation rule for a simple define is "associate
the given name with the given value"

e There are some more special forms which we
will encounter, but there are surprisingly few
of them compared to other languages

CSE 413 Au 08 - Introduction 32

Procedures

CSE 413 Au 08 - Introduction

33

References

e Section 15.5, Concepts of Programming
Languages

 Section 4.1, Revised® Report on the Algorithmic
Language Scheme (R5RS)

e For more help:

» Sections 1.1.6-1.1.8, Structure and Interpretation of
Computer Programs (Abelson, Sussman, &
Sussman)

CSE 413 Au 08 - Introduction 34

Recall the define special form

o Special forms have unique evaluation rules

 (define x 3) Is an example of a special
form: 1t 1S not a combination

» the evaluation rule for a simple define is "associate
the given name with the given value"

CSE 413 Au 08 - Introduction 35

Define and name a variable

e (define (name) {(expr))
» define - special form
» name - name that the value of expr is bound to

» expr - expression that is evaluated to give the
value for name

- define Is valid only at the top level of a
<program> and at the beginning of a <body>

CSE 413 Au 08 - Introduction

36

Define and name a procedure

e (define ({name) (formal params)) (body))
» define - special form

» name - the name that the procedure is bound to

» formal params - names used within the body of
procedure

» body - expression (or sequence of expressions)
that will be evaluated when the procedure is
called.

» The result of the last expression in the body will
be returned as the result of the procedure call

CSE 413 Au 08 - Introduction 37

Example definitions

(define pi1 3.1415926535)

(define (area-of-disk r)
- pt (*rr)

(define (area-of-ring outer I1nner)

(- (area-of-disk outer)
(area-of-disk 1nner)))

CSE 413 Au 08 - Introduction

38

Defined procedures are "first class"

e Compound procedures that we define are used
exactly the same way the primitive procedures
provided in Scheme are used

» names of built-in procedures are not treated
specially; they are simply names that have been
pre-defined

» you can't tell whether a name stands for a
primitive (built-in) procedure or a compound
(defined) procedure by looking at the name or how
It Is used

CSE 413 Au 08 - Introduction 39

Booleans

* Recall that one type of data object is boolean
» #1T (true) or #T (false)
* \We can use these explicitly or by calculating
them in expressions that yield boolean values
* An expression that yields a true or false value
IS called a predicate
» Ht =>
» (< 5 5)=
» (> p1 0) =>

CSE 413 Au 08 - Introduction

40

Conditional expressions

* As in all languages, we need to be able to
make decisions based on inputs and do
something depending on the result

Predicate Consequent

CSE 413 Au 08 - Introduction 41

Special form: cond

= (cond (clause,) (clause,) ... (clause))

 each clause iIs of the form
» ({predicate) (expression))

e the last clause can be of the form
» (else {(expression))

CSE 413 Au 08 - Introduction

42

Example: sign.scm

; return the sign of x as -1, 0, or 1

(define (sign x)
(cond
((<x0) -1)
((= x0) 0)
(= x 0) +1)))

CSE 413 Au 08 - Introduction

43

Special form: 1 f

e (1T (predicate) (consequent) (alternate))

e (1T (predicate) (consequent))

CSE 413 Au 08 - Introduction

44

Examples : abs.scm

- absolute value function
(define (abs a)

CSE 413 Au 08 - Introduction

45

Logical composition

e (and (e)) (ey... &)
e (Oor (e)(ey)...e))
e (not (e))

» Scheme interprets the expressions e; one at a time In
left-to-right order until it can tell the correct answer

CSE 413 Au 08 - Introduction

46

In-range.scm

- true 1T val 1s 1o <= val <= hi

(define (in-range lo val hi)
(and (<= 1o val)

(<= val hr1)))

CSE 413 Au 08 - Introduction

47

