
CSE 413: Programming Languages
and their Implementation

Hal Perkins
Autumn 2008

CSE 413 Au 08 - Introduction 1

Today’s Outliney

• Administrative Info
• Overview of the Course
• Introduction to Scheme• Introduction to Scheme

CSE 413 Au 08 - Introduction 2

Staff

• Instructor
» Hal Perkins (perkins@cs.washington.edu)

• Teaching AssistantTeaching Assistant
» Laura Marshall

(lmarsh16@cs washington edu)(lmarsh16@cs.washington.edu)

CSE 413 Au 08 - Introduction 3

Web Pageg

• All info is on the web page for CSE 413p g
(or at least will be once things are a bit further along…)

» http://www.cs.washington.edu/413
l k» also known as

http://www.cs.washington.edu/education/courses/413/08au

• Look there for schedules contact information• Look there for schedules, contact information,
assignments, links to discussion boards and mailing
lists, etc.

CSE 413 Au 08 - Introduction 4

CSE 413 E-mail List

• If you are registered for the course you will be
automatically registered.

• E-mail list is used for posting important
announcements by instructor and TAs

• You are responsible for anything sent here
» Mail to this list is sent to your uwnetid

CSE 413 Au 08 - Introduction 5

CSE 413 Discussion Board

• The course has a Catalyst GoPost message
board

• Use it to stay in touch outside of class
» Staff will watch and contribute too

• Use:
» General discussion of class contents
» Hints and ideas about assignments (but not

detailed code or solutions)
» Other topics related to the course

CSE 413 Au 08 - Introduction 6

Course Computingp g

• College of Arts & Sciences Instructional Computing Lab
(aka Math Science Computing Labs)

» Basement of Communications building: B-022/027
» http://depts.washington.edu/aslab

• Or work from home – all software available free
» See links on the course web» See links on the course web

CSE 413 Au 08 - Introduction 7

Grading: Estimated Breakdown:

• Approximate Grading:• Approximate Grading:
» Homework + Project: 55%
» Midterm: 15% (TBA, in class)
» Final: 25% (Thursday December 11
» Participation 5% 2:30-4:20)

• Assignments:
» Weights may differ to account for relative difficulty of

assignmentsassignments
» Assignments will be a mix of shorter written exercises

and longer programming projects

CSE 413 Au 08 - Introduction 8

Deadlines & Late Policyy

• Assignments generally due Thursday evenings g g y y g
via the web
» Exact times and dates will be given for each g

assignment
• Late policy: 4 late days per personp y y p p

» At most 2 on any single assignment
» Used only in integer units» Used only in integer units
» For group projects, both students must have late

days available and both are charged if used
CSE 413 Au 08 - Introduction 9

days ava ab e a d bot a e c a ged used

Academic (Mis-)Conduct()

• You are expected to do your own work
» Exceptions (group work), if any, will be clearly announced

• Things that are academic mis-conduct:
Sh i l ti d i k f ti k f» Sharing solutions, doing work for or accepting work from
others

» Searching for solutions on the web
» Consulting solutions to assignments or projects from

previous offerings of this course
• Integrity is a fundamental principle in the academic• Integrity is a fundamental principle in the academic

world (and elsewhere) – we and your classmates trust
you; don’t abuse that trust

CSE 413 Au 08 - Introduction 10

Homework for Today!!y

1) Assignment #1: (posted in the next day or so)
2) Information Sheet (aka Assignment #0): Bring2) Information Sheet (aka Assignment #0): Bring

to lecture on Friday Sept 26
3) Download and Install Dr Scheme (and play3) Download and Install Dr. Scheme (and play

with it!)
4) R di S “S h R ” W b4) Reading: See “Scheme Resources” on Web page

CSE 413 Au 08 - Introduction 11

Readingg

• No required text – we’ll make some suggestions as we go along
• Other references available from course web page

• Check “Functional Programming & Scheme” Link for:
» More notes on Scheme» More notes on Scheme
» Revised5 Report on the Algorithmic Language Scheme (R5RS)

• Section 2

» Link to Structure and Interpretation of Computer Programs (Abelson,
Sussman, & Sussman)
• Sections 1-1 1 5

CSE 413 Au 08 - Introduction 12

Sections 1 1.1.5

Tentative Course Schedule

• Week 1: Scheme
• Week 2: Scheme• Week 2: Scheme
• Week 3: Scheme
• Week 4: Scheme wrapup/intro to Ruby
• Weeks 5-6: Object-oriented programming and Ruby; scripting

languages
• Weeks 7-9: Language implementation, compilers and

interpreters
• Week 10: garbage collection; special topics

CSE 413 Au 08 - Introduction 13

What is this course about?

• Programming Languagesg g g g
• Their Implementation

CSE 413 Au 08 - Introduction 14

Why Study Programming Languages?y y g g g g

• Become a better software engineer
» Understand how to use language features
» Appreciate implementation issues

• Better background for language selection
» Familiar with range of languagesg g g
» Understand issues/advantages/disadvantages

• Better able to learn languages:• Better able to learn languages:
» You will learn many over your career

CSE 413 Au 08 - Introduction 15

Why Study Compilers/Interpreters? y y p p

• Better understanding of implementation issues g p
in programming languages:
» How is “this” implemented?» How is this implemented?
» Why does “this” run so slowly?

l i l• Translation appears many places:
» Processing command line parameters
» Converting files/programs from one

language/format to another

CSE 413 Au 08 - Introduction 16

Why are there so many (1,000s)
Programming Languages?g g g g

• Evolution: random coding -> structured g
programming -> OO programming

• Special Purposes: Lisp for symbols, SnobolSpecial Purposes: Lisp for symbols, Snobol
for strings, C for systems, Prolog for
relationshipsrelationships

• Personal Preference: Programmers have their
own personal tastesown personal tastes

CSE 413 Au 08 - Introduction 17

What Makes a Programming Language
Successful?Successful?

• Expressive power (more suited to a particular p p (p
task)

• Easy to use (teaching/learning)Easy to use (teaching/learning)
• Ease of implementation (easy to write a

compiler/interpreter for)compiler/interpreter for)
• Good compilers (Fortran)
• Economics, patronage (Cobol, Ada)

CSE 413 Au 08 - Introduction 18

• Donald Knuth:
» Programming is the art of telling another

human being what one wants the computer tohuman being what one wants the computer to
do.

CSE 413 Au 08 - Introduction 19

Programming Domainsg g

• Scientific applications:
» Using the computer as A large calculator
» FORTRAN, mathematica

• Business applications:
» Data processing and business procedures
» COBOL, some PL/I, spreadsheets

• Systems programming:y p g g
» Building operating systems and utilities
» C, c++

CSE 413 Au 08 - Introduction 20

Programming Domains (2)g g ()
• Parallel programming:

» Parallel and distributed systems
» Ada, CSP, Erlang, functional map/reduce (Google)

• Artificial intelligence:Artificial intelligence:
» Uses symbolic rather than numeric computations
» Lists as main data structure, flexibility (code = data)
» Lisp 1959, prolog 1970s

• Scripting languages:
» A list of commands to be executed

» UNIX shell programming, awk, tcl, perl

CSE 413 Au 08 - Introduction 21

Programming Domains (3)g g ()

• Education:
» Languages designed to facilitate teaching
» Pascal, BASIC, logo

• Special purpose:
» Other than the above...
» Simulation
» Specialized equipment control
» String processing
» Visual languages

CSE 413 Au 08 - Introduction 22

Why Scheme?y

• The simplicity of the language lets us work on
problem solving, rather than just syntax issues

• Structure of the language lets us see that the
structure of C/Java/Basic is not the only way
to express problem solutions

• Stretch our brains
» study more than one language paradigm and study

th l ti hi b t d i dithe relationship between design paradigms
» Recursive programming is an essential part of a

programmer’s toolkit
CSE 413 Au 08 - Introduction 23

programmer s toolkit

Example DrScheme screenp

Definitions window
enter programs here

Interactions windowInteractions window
enter expressions here

CSE 413 Au 08 - Introduction 24

Definitions window

• Define programs in the definitions windowp g
» Save the contents of the window to a file using

menu item file - save definitions as …
» Load existing files with menu item file - open
» Execute the contents of the definitions window by y

clicking on the “run" button
» Check and highlight syntax by clicking on the

"check syntax" button
» Re-indent all with control-i

CSE 413 Au 08 - Introduction 25

Interactions Window

• Evaluate simple expressions directly in the p p y
Interactions window

• Position the cursor after the ">", then type inPosition the cursor after the , then type in
your expression
» DrScheme responds by evaluating the expression» DrScheme responds by evaluating the expression

and printing the result
» recall previous expression with escape-p» recall previous expression with escape p

• Expressions can reference symbols defined
when you executed the Definitions window

CSE 413 Au 08 - Introduction 26

when you executed the Definitions window

Think functionallyy
• Procedural programming

» The order of assignments changes the operation of the» The order of assignments changes the operation of the
program because the state is changed by assignment

• Functional programming (Scheme)• Functional programming (Scheme)
» Computation is a sequence of function definitions and

evaluationsevaluations
» Core is free of side-effects (assignment)

R f ti l t A i ill l» Referential transparency: An expression will always
yield the same value when evaluated
• Not true in presence of side effects

CSE 413 Au 08 - Introduction 27

• Not true in presence of side-effects

Primitive Expressionsp
• constants

» integer :
» rational :
» real :
» boolean :

• variable names (symbols)
» Names can contain almost any character except es c co os y c c e e cep

white space and parentheses
» Stick with simple names like value, x, iter, ...

CSE 413 Au 08 - Introduction 28

p

Compound Expressionsp p
• Either a combination or a special form
1. Combination : (operator operand operand …)

» there are quite a few pre-defined operators

» We can define our own operators

2. Special formp
» keywords in the language
» eg define if cond

CSE 413 Au 08 - Introduction 29

» eg, define, if, cond

Combinations
• (operator operand operand …)

• this is prefix notation, the operator comes first
bi ti l d t d li ti• a combination always denotes a procedure application

• the operator is a symbol or an expression, the applied
d i th i t d lprocedure is the associated value

» +, -, abs, my-function
» characters like * and + are not special; if they do not stand» characters like and + are not special; if they do not stand

alone then they are part of some name

CSE 413 Au 08 - Introduction 30

Evaluating Combinationsg
• To evaluate a combination

» Evaluate the subexpressions of the combination
» Apply the procedure that is the value of the leftmost

subexpression (the operator) to the arguments that are
the values of the other subexpresions (the operands)

l (d)• Examples (demo)

CSE 413 Au 08 - Introduction 31

Evaluating Special Formsg p

• Special forms have unique evaluation rulesp q
• (define x 3) is an example of a special

form; it is not a combinationform; it is not a combination
» the evaluation rule for a simple define is "associate

the given name with the given value"g g
• There are some more special forms which we

will encounter but there are surprisingly fewwill encounter, but there are surprisingly few
of them compared to other languages

CSE 413 Au 08 - Introduction 32

Procedures

CSE 413 Au 08 - Introduction 33

References

• Section 15.5, Concepts of Programming
Languages
S ti 4 1 R i d5 R t th Al ith i• Section 4.1, Revised5 Report on the Algorithmic
Language Scheme (R5RS)

• For more help:
» Sections 1 1 6-1 1 8 Structure and Interpretation of» Sections 1.1.6 1.1.8, Structure and Interpretation of

Computer Programs (Abelson, Sussman, &
Sussman)

CSE 413 Au 08 - Introduction 34

Recall the define special formf p

• Special forms have unique evaluation rulesp q
• (define x 3) is an example of a special

form; it is not a combinationform; it is not a combination
» the evaluation rule for a simple define is "associate

the given name with the given value"g g

CSE 413 Au 08 - Introduction 35

Define and name a variable

• (define 〈name〉 〈expr〉)
» define - special form
» name - name that the value of expr is bound to
» expr - expression that is evaluated to give the

value for name
• define is valid only at the top level of a

<program> and at the beginning of a <body>p g g g y

CSE 413 Au 08 - Introduction 36

Define and name a procedurep

• (define (〈name〉 〈formal params〉) 〈body〉)
» define - special form
» name - the name that the procedure is bound to
» formal params - names used within the body of

procedure
» body - expression (or sequence of expressions)

that will be evaluated when the procedure is
called.

» The result of the last expression in the body will
b d h l f h d ll

CSE 413 Au 08 - Introduction 37

be returned as the result of the procedure call

Example definitionsp

(define pi 3.1415926535)

(define (area-of-disk r)
(* pi (* r r)))

(define (area-of-ring outer inner)
(- (area-of-disk outer)(()

(area-of-disk inner)))

CSE 413 Au 08 - Introduction 38

Defined procedures are "first class"p

• Compound procedures that we define are used p p
exactly the same way the primitive procedures
provided in Scheme are usedp
» names of built-in procedures are not treated

specially; they are simply names that have been
pre-defined

» you can't tell whether a name stands for a
primitive (built-in) procedure or a compound
(defined) procedure by looking at the name or how
it is used

CSE 413 Au 08 - Introduction 39

it is used

Booleans
• Recall that one type of data object is boolean

» #t (true) or #f (false)

• We can use these explicitly or by calculating
them in expressions that yield boolean values

• An expression that yields a true or false value p y
is called a predicate
» #t =>#t
» (< 5 5) =>
» (> pi 0) =>

CSE 413 Au 08 - Introduction 40

» (> pi 0) >

Conditional expressionsp

• As in all languages, we need to be able to g g
make decisions based on inputs and do
something depending on the resultg p g
Predicate Consequent

CSE 413 Au 08 - Introduction 41

Special form: condp

• (cond 〈clause1〉 〈clause2〉 ... 〈clausen〉)1 2 n

• each clause is of the form
» (〈predicate〉 〈expression〉)» (〈predicate〉 〈expression〉)

h l l b h• the last clause can be of the form
» (else 〈expression〉)

CSE 413 Au 08 - Introduction 42

Example: sign.scmp g
; return the sign of x as -1, 0, or 1

(define (sign x)
(d(cond
((< x 0) -1)
((= x 0) 0)((x 0) 0)
((> x 0) +1)))

CSE 413 Au 08 - Introduction 43

Special form: ifp

• (if 〈predicate〉 〈consequent〉 〈alternate〉)

• (if 〈predicate〉 〈consequent〉)

CSE 413 Au 08 - Introduction 44

Examples : abs.scmp
; absolute value function
(define (abs a)

CSE 413 Au 08 - Introduction 45

Logical compositiong p

• (and 〈e1〉 〈e2〉... 〈en〉)

• (or 〈e1〉 〈e2〉... 〈en〉)

• (not 〈e〉)• (not 〈e〉)

S h i t t th i t ti i• Scheme interprets the expressions ei one at a time in
left-to-right order until it can tell the correct answer

CSE 413 Au 08 - Introduction 46

in-range.scmg

; true if val is lo <= val <= hi

(define (in-range lo val hi)
(and (<= lo val)

(<= val hi)))

CSE 413 Au 08 - Introduction 47

