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Today’s Outliney

• Administrative Info
• Overview of the Course
• Introduction to Scheme• Introduction to Scheme
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Staff

• Instructor
» Hal Perkins (perkins@cs.washington.edu)

• Teaching AssistantTeaching Assistant
» Laura Marshall 

(lmarsh16@cs washington edu)(lmarsh16@cs.washington.edu)
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Web Pageg

• All info is on the web page for CSE 413p g
(or at least will be once things are a bit further along…)

» http://www.cs.washington.edu/413
l k» also known as

http://www.cs.washington.edu/education/courses/413/08au

• Look there for schedules contact information• Look there for schedules, contact information, 
assignments, links to discussion boards and mailing 
lists, etc.
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CSE 413 E-mail List

• If you are registered for the course you will be 
automatically registered. 

• E-mail list is used for posting important 
announcements by instructor and TAs

• You are responsible for anything sent here
» Mail to this list is sent to your uwnetid
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CSE 413 Discussion Board

• The course has a Catalyst GoPost message 
board

• Use it to stay in touch outside of class
» Staff will watch and contribute too

• Use: 
» General discussion of class contents
» Hints and ideas about assignments (but not

detailed code or solutions)
» Other topics related to the course
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Course Computingp g

• College of Arts & Sciences Instructional Computing Lab
(aka Math Science Computing Labs)

» Basement of Communications building: B-022/027
» http://depts.washington.edu/aslab

• Or work from home – all software available free
» See links on the course web» See links on the course web
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Grading: Estimated Breakdown:

• Approximate Grading:• Approximate Grading:
» Homework + Project: 55%
» Midterm: 15% (TBA, in class)
» Final: 25% (Thursday December 11
» Participation 5% 2:30-4:20)

• Assignments:
» Weights may differ to account for relative difficulty of 

assignmentsassignments
» Assignments will be a mix of shorter written exercises 

and longer programming projects
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Deadlines & Late Policyy

• Assignments generally due Thursday evenings g g y y g
via the web
» Exact times and dates will be given for each g

assignment
• Late policy: 4 late days per personp y y p p

» At most 2 on any single assignment
» Used only in integer units» Used only in integer units
» For group projects, both students must have late 

days available and both are charged if used
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Academic (Mis-)Conduct( )

• You are expected to do your own work
» Exceptions (group work), if any, will be clearly announced

• Things that are academic mis-conduct:
Sh i l ti d i k f ti k f» Sharing solutions, doing work for or accepting work from 
others 

» Searching for solutions on the web
» Consulting solutions to assignments or projects from 

previous offerings of this course
• Integrity is a fundamental principle in the academic• Integrity is a fundamental principle in the academic 

world (and elsewhere) – we and your classmates trust 
you; don’t abuse that trust
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Homework for Today!!y

1) Assignment #1: (posted in the next day or so)
2) Information Sheet (aka Assignment #0): Bring2) Information Sheet (aka Assignment #0): Bring 

to lecture on Friday Sept 26 
3) Download and Install Dr Scheme (and play3) Download and Install Dr. Scheme (and play 

with it!)
4) R di S “S h R ” W b4) Reading: See “Scheme Resources” on Web page
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Readingg

• No required text – we’ll make some suggestions as we go along
• Other references available from course web page

• Check “Functional Programming & Scheme” Link for:
» More notes on Scheme» More notes on Scheme
» Revised5 Report on the Algorithmic Language Scheme (R5RS)

• Section 2

» Link to Structure and Interpretation of Computer Programs (Abelson, 
Sussman, & Sussman)
• Sections 1-1 1 5
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Tentative Course Schedule

• Week 1: Scheme
• Week 2: Scheme• Week 2: Scheme
• Week 3: Scheme
• Week 4: Scheme wrapup/intro to Ruby
• Weeks 5-6: Object-oriented programming and Ruby; scripting 

languages
• Weeks 7-9: Language implementation, compilers and 

interpreters
• Week 10: garbage collection; special topics
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What is this course about?

• Programming Languagesg g g g
• Their Implementation
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Why Study Programming Languages?y y g g g g

• Become a better software engineer
» Understand how to use language features
» Appreciate implementation issues

• Better background for language selection
» Familiar with range of languagesg g g
» Understand issues/advantages/disadvantages

• Better able to learn languages:• Better able to learn languages:
» You will learn many over your career
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Why Study Compilers/Interpreters? y y p p

• Better understanding of implementation issues g p
in programming languages:
» How is “this” implemented?» How is this implemented?
» Why does “this” run so slowly?

l i l• Translation appears many places:
» Processing command line parameters
» Converting files/programs from one 

language/format to another
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Why are there so many (1,000s) 
Programming Languages?g g g g

• Evolution: random coding -> structured g
programming -> OO programming

• Special Purposes: Lisp for symbols, SnobolSpecial Purposes: Lisp for symbols, Snobol 
for strings, C for systems, Prolog for 
relationshipsrelationships

• Personal Preference: Programmers have their 
own personal tastesown personal tastes
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What Makes a Programming Language 
Successful?Successful?

• Expressive power (more suited to a particular p p ( p
task)

• Easy to use (teaching/learning)Easy to use (teaching/learning)
• Ease of implementation (easy to write a 

compiler/interpreter for)compiler/interpreter for)
• Good compilers (Fortran)
• Economics, patronage (Cobol, Ada)
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• Donald Knuth:
» Programming is the art of telling another 

human being what one wants the computer tohuman being what one wants the computer to 
do.
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Programming Domainsg g

• Scientific applications:
» Using the computer as A large calculator
» FORTRAN, mathematica

• Business applications:
» Data processing and business procedures
» COBOL, some PL/I, spreadsheets

• Systems programming:y p g g
» Building operating systems and utilities
» C, c++
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Programming Domains (2)g g ( )
• Parallel programming:

» Parallel and distributed systems
» Ada, CSP, Erlang, functional map/reduce (Google)

• Artificial intelligence:Artificial intelligence:
» Uses symbolic rather than numeric computations
» Lists as main data structure, flexibility (code = data)
» Lisp 1959, prolog 1970s

• Scripting languages:
» A list of commands to be executed

» UNIX shell programming, awk, tcl, perl
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Programming Domains (3)g g ( )

• Education:
» Languages designed to facilitate teaching
» Pascal, BASIC, logo

• Special purpose:
» Other than the above...
» Simulation
» Specialized equipment control
» String processing
» Visual languages
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Why Scheme?y

• The simplicity of the language lets us work on 
problem solving, rather than just syntax issues

• Structure of the language lets us see that the 
structure of C/Java/Basic is not the only way 
to express problem solutions

• Stretch our brains
» study more than one language paradigm and study 

th l ti hi b t d i dithe relationship between design paradigms
» Recursive programming is an essential part of a 

programmer’s toolkit
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Example DrScheme screenp

Definitions window
enter programs here

Interactions windowInteractions window
enter expressions here
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Definitions window

• Define programs in the definitions windowp g
» Save the contents of the window to a file using 

menu item file - save definitions as … 
» Load existing files with menu item file - open
» Execute the contents of the definitions window by y

clicking on the “run" button
» Check and highlight syntax by clicking on the 

"check syntax" button
» Re-indent all with control-i
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Interactions Window

• Evaluate simple expressions directly in the p p y
Interactions window

• Position the cursor after the ">", then type inPosition the cursor after the , then type in 
your expression
» DrScheme responds by evaluating the expression» DrScheme responds by evaluating the expression 

and printing the result
» recall previous expression with escape-p» recall previous expression with escape p

• Expressions can reference symbols defined 
when you executed the Definitions window
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Think functionallyy
• Procedural programming

» The order of assignments changes the operation of the» The order of assignments changes the operation of the 
program because the state is changed by assignment

• Functional programming (Scheme)• Functional programming (Scheme)
» Computation is a sequence of function definitions and 

evaluationsevaluations
» Core is free of side-effects (assignment)

R f ti l t A i ill l» Referential transparency: An expression will always 
yield the same value when evaluated
• Not true in presence of side effects
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Primitive Expressionsp
• constants

» integer : 
» rational : 
» real :
» boolean :

• variable names (symbols)
» Names can contain almost any character except es c co os y c c e e cep

white space and parentheses
» Stick with simple names like value, x, iter, ...
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Compound Expressionsp p
• Either a combination or a special form
1. Combination : (operator operand operand …)

» there are quite a few pre-defined operators

» We can define our own operators

2. Special formp
» keywords in the language
» eg define if cond
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Combinations
• (operator operand operand …)

• this is prefix notation, the operator comes first
bi ti l d t d li ti• a combination always denotes a procedure application

• the operator is a symbol or an expression, the applied 
d i th i t d lprocedure is the associated value

» +, -, abs, my-function
» characters like * and + are not special; if they do not stand» characters like  and + are not special; if they do not stand 

alone then they are part of some name
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Evaluating Combinationsg
• To evaluate a combination

» Evaluate the subexpressions of the combination
» Apply the procedure that is the value of the leftmost 

subexpression (the operator) to the arguments that are 
the values of the other subexpresions (the operands)

l (d )• Examples (demo)
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Evaluating Special Formsg p

• Special forms have unique evaluation rulesp q
• (define x 3) is an example of a special 

form; it is not a combinationform; it is not a combination
» the evaluation rule for a simple define is "associate 

the given name with the given value"g g
• There are some more special forms which we 

will encounter but there are surprisingly fewwill encounter, but there are surprisingly few 
of them compared to other languages
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Procedures
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References

• Section 15.5, Concepts of Programming 
Languages
S ti 4 1 R i d5 R t th Al ith i• Section 4.1, Revised5 Report on the Algorithmic 
Language Scheme (R5RS)

• For more help: 
» Sections 1 1 6-1 1 8 Structure and Interpretation of» Sections 1.1.6 1.1.8, Structure and Interpretation of 

Computer Programs (Abelson, Sussman, & 
Sussman)
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Recall the define special formf p

• Special forms have unique evaluation rulesp q
• (define x 3) is an example of a special 

form; it is not a combinationform; it is not a combination
» the evaluation rule for a simple define is "associate 

the given name with the given value"g g
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Define and name a variable

• (define 〈name〉 〈expr〉)
» define - special form
» name - name that the value of expr is bound to
» expr - expression that is evaluated to give the 

value for name
• define is valid only at the top level of a 

<program> and at the beginning of a <body>p g g g y
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Define and name a procedurep

• (define (〈name〉 〈formal params〉) 〈body〉)
» define - special form
» name - the name that the procedure is bound to
» formal params - names used within the body of 

procedure
» body - expression (or sequence of expressions) 

that will be evaluated when the procedure is 
called.  

» The result of the last expression in the body will 
b d h l f h d ll
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Example definitionsp

(define pi 3.1415926535)

(define (area-of-disk r)
(* pi (* r r)))

(define (area-of-ring outer inner)
(- (area-of-disk outer)( ( )

(area-of-disk inner)))
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Defined procedures are "first class"p

• Compound procedures that we define are used p p
exactly the same way the primitive procedures 
provided in Scheme are usedp
» names of built-in procedures are not treated 

specially; they are simply names that have been 
pre-defined

» you can't tell whether a name stands for a 
primitive (built-in) procedure or a compound 
(defined) procedure by looking at the name or how 
it is used
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Booleans 
• Recall that one type of data object is boolean

» #t (true) or #f (false)

• We can use these explicitly or by calculating 
them in expressions that yield boolean values

• An expression that yields a true or false value p y
is called a predicate
» #t =>#t
» (< 5 5) => 
» (> pi 0) =>
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Conditional expressionsp

• As in all languages, we need to be able to g g
make decisions based on inputs and do 
something depending on the resultg p g
Predicate                               Consequent
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Special form: condp

• (cond 〈clause1〉 〈clause2〉 ... 〈clausen〉)1 2 n

• each clause is of the form
» (〈predicate〉 〈expression〉)» (〈predicate〉 〈expression〉)

h l l b h• the last clause can be of the form
» (else 〈expression〉)
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Example: sign.scmp g
; return the sign of x as -1, 0, or 1

(define (sign x)
( d(cond
((< x 0) -1)
((= x 0) 0)((  x 0) 0)
((> x 0) +1)))
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Special form: ifp

• (if 〈predicate〉 〈consequent〉 〈alternate〉)

• (if 〈predicate〉 〈consequent〉 )
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Examples : abs.scmp
; absolute value function
(define (abs a)
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Logical compositiong p

• (and 〈e1〉 〈e2〉... 〈en〉)

• (or 〈e1〉 〈e2〉... 〈en〉)

• (not 〈e〉)• (not 〈e〉)

S h i t t th i t ti i• Scheme interprets the expressions ei one at a time in 
left-to-right order until it can tell the correct answer
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in-range.scmg

; true if val is lo <= val <= hi

(define (in-range lo val hi)
(and (<= lo val)

(<= val hi)))
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