CSE 413 Final Exam

December 11,2008

Name

Sample Solution

The exam is closed book, except that you may have a single page of hand-written notes for reference
plus the page of notes you had for the midterm (although you are unlikely to need that one).

Style and indenting matter, within limits. We’re not overly picky about details, but we do need to be

able to follow your code and understand it.

Please wait to turn the page until everyone has their exam and you have been told to begin. If you have
guestions during the exam, raise your hand and someone will come to you. Don’t leave your seat.

Advice: The solutions to many of the problems are short. Don’t be alarmed if there is a lot more room
on the page than you actually need for your answer.

More gratuitous advice: Be sure to get to all the questions. If you find you are spending a lot of time on
a question, move on and try other ones, then come back to the question that was taking the time.

1 /12
2 /7
3 /5
4 /7
5 /12
6 /12
7 /15
8 /10
9 /10
10 /10
Total / 100

CSE 413 Final Exam, December 11, 2008

Sample Solution

Page 1 of 12

Question 1. (12 points) Regular expressions |. Describe the set of strings generated by each of the
following regular expressions. For full credit, give a description of the sets like “all sets of strings made
up of a’s, b’s, and c¢’s with 4 a’s and 5 b’s” instead of just transcribing the expressions from regular
expression notation into English.

(a) (alb)*c(alb)* c(alb)*

All strings of a’s, b’s, and ¢’s with exactly two c’s.

(b) (x*y*)* xx (x]y)*

All strings of x’s and y’s that have at least one pair of adjacent x’s.

CSE 413 Final Exam, December 11, 2008 Sample Solution Page 2 of 12

Question 2. (7 points) Regular expressions Il. Write a regular expression or set of regular expressions
that generates all decimal numbers (digits 0-9) with an integer and fraction part, but no exponent,
formed according to these rules:

e There must be at least one digit before and after the decimal point.

e There may not be any leading zeros in the integer part or trailing zeros in the fraction part unless
that part of the number consists of a single zero.

Examples of legal numbers according to these rules: 3.1415926535, 0.015, 170.0, 0.0, 500.001, 0.5

Example of illegal numbers: 17 (no decimal point), 17. (no digits after the decimal point), .01 (no digits
before the decimal point), 012.5 (leading 0), 1.0000 (trailing zeros), 0.250 (trailing zero in the fraction
part — the 0 in the integer part is ok).

Fine print: You may use basic regular expressions (sequences rs, choice r|s, and repetition r* and, of course,
parentheses for subexpressions). You may also use + (one or more) and ? (zero or one), and character classes like
[ax-z], but you may not use additional regular expression operators that might be found in various programming
languages and software tools. You also may use named abbreviations like “vowels ::= [aeiou]” if these help.

(0] [1-9][0-9]*) . (0] [0-9]*[1-9])

CSE 413 Final Exam, December 11, 2008 Sample Solution Page 3 of 12

Question 3. (5 points) A scanner for Java, C, or C++ has to deal with identifiers and various operators
including +, -, ++, --, =, +=, -=, ==, I=_andso forth. Recalling that a scanner uses the
principle of longest match when splitting input characters into tokens, show how the following string is
split into tokens. Draw a box around each character or sequence of characters that form a token in the
following input. You should assume that these characters are adjacent in the input with no spaces in
between. The first two boxes are drawn for you.

(Remember that the tokens don’t need to make up a meaningful or legal program. The scanner divides
the input characters into tokens without worrying about context.)

di--19

ajtH|c ow|t+ =

Question 4. (7 points) Give a context free grammar that generates all strings containing zero or more
a’s, b’s, and C’s that have twice as many a’s as b’s (if there are any a@’s and b’s in the string).

Obviously there are many possible solutions that will work. Here is one.

S:=SaSaShS | SaShSaS | SbSaSaS | c | SS | €

CSE 413 Final Exam, December 11, 2008 Sample Solution Page 4 of 12

Question 5. (12 points) Here is a fragment of a grammar for method calls in a language somewhat like
Java or Ruby. A method call has an optional parameter list with a single parameter.

expr ::= id | expr . id optparms
optparms ::= € | (expr)

The non-terminal id can derive any single lower-case lettera, b, c, .., Z. The symbol €is the
Greek letter epsilon, denoting the empty string.

(a) Draw the full parse tree for the expression X.p.q(n).

expr

expr i optparms

expr id optparms expr
id id
| E |
X p q | n)

(b) Give the leftmost derivation of the expression X .p -q(n) as diagramed in part (a).

expr -> expr. id optparms
-> expr . id optparms . id optparms
- id. id optparms . id optparms
- x . id optparms . id optparms
-> X . p optparms. id optparms
- X.p.id optparms

- X.p.qoptparms
>x.p.q(expr)
>x.p.q(id)
2>x.p.q(n)

CSE 413 Final Exam, December 11, 2008 Sample Solution Page 5 of 12

Question 6. (12 points) Your customers aren’t too happy with a programming language that only
supports method calls with a single parameter. One of the interns on your staff suggests changing the
grammar from the previous problem as follows, to optionally allow multiple expressions in a parameter
list separated by commas.

expr ::= id | expr . id optparms
optparms ::= € | (exprs)
exprs ::= expr | exprs , exprs

(a) Show that this proposed extension results in an ambiguous grammar.

It’s sufficient to show that just part of the grammar is ambiguous, in this case the last rule. Here are
two distinct leftmost derivations of x, x, x.

expr - exprs , exprs > exprs, exprs , exprs = expr , exprs , exprs -» id , exprs, exprs =
X , eXprs , exprs = X, expr, exprs = X, id , exprs = x, X, exprs = X, X, expr > x, x, id 2 x, x, x

expr = exprs , exprs - expr, exprs = id , exprs = x , exprs - X, exprs , exprs -
X, eXpr , exprs = X, id, exprs = x, X, exprs > X, X, expr 2> x, x,id 2 x, x, x

(Actually, most solutions just showed two different parse trees for something like x, x, x. That is
probably an easier way to visualize the ambiguity, but your instructor is too lazy to do battle with the
computer drawing tools again to do that here. Left as an exercise, as the cliché goes.)

(b) Describe how to fix this proposed grammar to get rid of the ambiguity and still allow more than one
expression in a parameter list, with commas separating multiple expressions if there are more than one.

Rewrite the last rule in the grammar to use either left- or right-recursion:

exprs ::= expr | exprs, expr

or

exprs ::= expr | expr, exprs

CSE 413 Final Exam, December 11, 2008 Sample Solution Page 6 of 12

Enough theory for the moment! Time for some Ruby hacking.

Question 7. (15 points) Write a Ruby program that reads text from standard input and reports the word
that occurs most frequently in the input and how often it occurs. For example, if the input is

to be or not to be
to do is to be
do be do be do

the output should be

be 5

since the word “be” occurs 5 times and no other word occurs that frequently. If several words have the
same number of occurrences and they are the most frequent, your program should arbitrarily pick one
of them and print it and the number of times it appears. For instance, if the input is

one two one two three
the program could print either

one 2
or

two 2

To simplify things, you should read the input one line at a time with gets and use the String split
method to break each line into words. The basic behavior of spl it is to return an array of the words,
where words are defined as strings of characters separated by whitespace. Example:

“one two three”.split => [“one”, “two”, “three’]

To keep the problem simple, assume that there is no extra leading or trailing whitespace in the input
lines, and assume that all words in the input contain only lower case letters, so you don’t have to deal
with issues of punctuation or capitalization.

For full credit you should use Ruby iterators like each to process the contents of containers like arrays
and hashes. Recall that if h is a hash, you can iterate through its key/value pairs with

h.each {]key, value|] ... }

Write your code on the next page. If you find it helpful, you can remove this page from the exam for
reference while you are working.

CSE 413 Final Exam, December 11, 2008 Sample Solution Page 7 of 12

Question 7. (cont.) Code for the word count program:

freq = {} # word=>frequency hash table. Could also use Hash.new

read input and count words
while line = gets
words = line.split
words.each do | w | # Could also use { ... } for blocks
it freq[w]
freq[w] += 1
else
freq[w] = 1
end
end
end

find most frequent word and print it
max_Ffreq = 0
max_word = """ # not strictly needed, but
ensures not null if no iInput
freq.each do | word, n |
if n > max_freq
max_freq = n
max_word = word
end
end

print max word, ™ ', max_freq # puts also ok

CSE 413 Final Exam, December 11, 2008 Sample Solution Page 8 of 12

Question 8. (10 points) We would like to extend the calculator language from the interpreter project by
adding a conditional expression as follows. The additional expression is

condexp ::= 1 Fexp; thenexp, else exp; end

The meaning of the conditional expression is that all three expressions, exp;, exp,, and exp; are
evaluated, then if exp; has a value that is not 0, the result of the conditional expression is the value of
exp,, otherwise its value is the value of exps.

Your job is to write a method condexp to parse and evaluate this conditional expression (and the
solution is shorter than the question!). You should make the following assumptions in your solution:

e The interpreter already contains a method eXxp to parse and return the value of expressions,
and it has been modified to call condexp when it needs to process a conditional expression.

e The scanner has been modified to recognize the keywords 1 f, then, else, and end and
return these as separate tokens. You can call the scanner’s next_token method whenever
you need to get the next token from the input. If for some reason you need it, the kind
method of a Token object returns the strings “if”, “then”, “else”, and “end” for these tokens.

e Thereis a global variable current_token that contains the “if” Token that begins a
conditional expression at the moment condexp is called. Method condexp is responsible for
advancing through the input and leaving the token following the conditional expression in
current_token when condexp returns.

e You should assume that there are no syntax errors, missing or extra tokens, or other problems in
a conditional expression.

Write your condexp method on the next page. You can remove this page for reference if it makes
things easier while you are working.

CSE 413 Final Exam, December 11, 2008 Sample Solution Page 9 of 12

Question 8. (cont.) Complete the definition of condexp below.

parse and evaluate condexp ::= if expl then exp2 else exp3 end

def condexp
current_token
expl = exp
current_token
exp2 = exp
current_token
exp3 = exp
current_token
if expl =0
exp2
else
exp3
end

end

next_token

next_token

next _token

next_token

:

skip

skip then

skip else

skip end

Notice that we don’t actually have to use an explicit return, since the 1T expression is the last one

in the method, and the value of an i T expression is the value of the last expression evaluated in

whichever branch is executed. But it’s fine if you did use return.

A couple of notes about common errors:

e Itis necessary to actually call exp recursively to parse (and evaluate) both branches of the

conditional expression. It is not sufficient just to scan forward looking for an “else” or “end”

token, or just skip ahead an extra token or two, since the subexpressions may be arbitrarily

complicated, and might contain nested conditional expressions. (This is also why the problem

specified that both exp, and exp; should be evaluated. The way the interpreter was designed,

there is no mechanism to parse an expression without evaluating it.)

e The invariant is that all parser methods should assume that current_token is the first

token of whatever it is that they are to parse, and they should consume whatever they parse

and leave the first token of whatever follows in current_token when they are done. So it

is not enough just to call next_token to skip the keywords without setting

current_token.

CSE 413 Final Exam, December 11, 2008

Sample Solution Page 10 of 12

The next couple of pages are short-answer questions about type systems and languages. Please keep
your answers brief and to the point (and legible!!). Your readers thank you.

Some representative answers are given below. Other answers were possible for full credit, but they
had to be specific and bring up important points, not incidental ones.

Question 9. (10 points) Ruby is a dynamically typed language (“duck typing”). Languages like Java and
C++ are statically typed languages.

(a) Describe one distinct advantage that static type systems have over dynamic typing.
A couple of possibilities

e Able to detect a variety of errors by examining programs without executing them. In
particular, static type systems for object-oriented languages can ensure that all objects have
methods to respond to messages sent to them, and that methods are called with the correct
number and types of parameters.

e The additional information available from the type system can allow the compiler to better
optimize or special-case the generated code to run more efficiently than can be done when
the type information is unknown until the program is executed.

(b) Describe one distinct advantage that dynamic typing has over static type systems.

o The biggest one is that it allows code to be reused and adapted to situations that it was not
originally designed for.

e Another advantage is that it is easier to prototype and incrementally develop code because
more details can be omitted or postponed until later in the project.

CSE 413 Final Exam, December 11, 2008 Sample Solution Page 11 of 12

Question 10. (10 points) Various languages have different approaches to allowing new classes to be
created from other classes, modules, or interfaces. For instance, C++ allows multiple inheritance, where
a new class can be defined as a subclass of more than one other class. Java only allows a class to have a
single superclass, but allows it to implement multiple interfaces.

(a) Describe one advantage of the C++ approach allowing multiple superclasses, compared to the Java
approach of a single superclass plus multiple interfaces.

The biggest advantage is that it allows a new class to inherit implementations (not just specifications)
from more than one existing class.

It also may allow the code to more naturally model the problem domain and the interactions between
different kinds of objects and abstractions in it.

(b) Describe one advantage of the Java approach restricting classes to a single superclass plus optionally
implementing multiple interfaces, compared to the C++ approach that allows multiple superclasses.

Simplicity at several levels. Programs that use multiple inheritance extensively are prone to having
complex, brittle relationships between classes. The Java approach avoids many of these problems. It
also allows a simpler implementation, since we don’t need to deal with issues like object layout and
method dispatch for objects that inherit implementations from more than one immediate ancestor
class.

CSE 413 Final Exam, December 11, 2008 Sample Solution Page 12 of 12

