
21-Oct-2005 cse413-07-structures © 2005 University of Washington 1

Hierarchical Structures

CSE 413, Autumn 2005
Programming Languages

http://www.cs.washington.edu/education/courses/413/05au/

21-Oct-2005 cse413-07-structures © 2005 University of Washington 2

References

• Section 2.2.2, 2.3.1, Structure and Interpretation of
Computer Programs

• Sections 4.1.2, 6.1, 6.3.3, Revised5 Report on the
Algorithmic Language Scheme (R5RS)

21-Oct-2005 cse413-07-structures © 2005 University of Washington 3

Lists are a basic abstraction

• Using list to build lists, we can build data
structures of increasing complexity

• Nested lists
» one or more of the elements of the list can also be

lists themselves
» (list 1 2 (list 3 4) 5)

21-Oct-2005 cse413-07-structures © 2005 University of Washington 4

List structure

4

5

6

(define a (list 4 5 6))

a

(define b (list 7 a 8))

4

5

6

a

7

8

b

car = "this element"
cdr = "rest of the elements"

21-Oct-2005 cse413-07-structures © 2005 University of Washington 5

Printed representation of a list

• Lists are so fundamental to Scheme that the
interpreter assumes that any data structure that
uses pairs is probably a list

• The printed representation of a pair uses a “.”
to separate the car and the cdr elements
» (cons 3 4) => (3 . 4)

• But when printing a list, the complexity of the
pair is suppressed for clarity when possible
» (cons 3 ‘()) => (3)

21-Oct-2005 cse413-07-structures © 2005 University of Washington 6

Printing pairs and lists

(cons 3 4) => (3 . 4)

3 4

(cons 3 (cons 4 '())) => (3 4)

this is a well formed listthis is a valid data structure,
but it is not a well formed list

3

4

21-Oct-2005 cse413-07-structures © 2005 University of Washington 7

List structure

4

6

(list 4 6) => (4 6)

(list 2 4 6) => (2 4 6)

2

4

6

(list 2 (list 4 6)) => (2 (4 6))

4

6

2

21-Oct-2005 cse413-07-structures © 2005 University of Washington 8

List structure and cons

2

4

6

(cons 2 (list 4 6)) => (2 4 6)

(list 2 (list 4 6)) => (2 (4 6))

4

6

2

21-Oct-2005 cse413-07-structures © 2005 University of Washington 9

Using lists to build abstract data types

• We know how lists are constructed and we know
how to represent them

• We want to build abstract data structures
» the use of lists is actually an implementation detail
» details of the implementation should not leak into the

statement of the problem solution
• For example, a tree structure can be built in

many different ways in many different languages

21-Oct-2005 cse413-07-structures © 2005 University of Washington 10

Further abstraction

• The more we can map into the problem
domain the better

• A layer of abstraction can hide much or all of
the messy details of implementation
» easier to understand
» easier to replace the implementation

• Lists are an abstraction implemented with pairs
• Trees are an abstraction implemented with lists

21-Oct-2005 cse413-07-structures © 2005 University of Washington 11

Expression trees

• In Scheme, we often use constructors and
accessors to abstract away the underlying
representation of data (which is usually a list)

• For example, consider arithmetic expression trees
• A binary expression is

» an operator: +, -, *, / and two operands
• An operand is

» a number or another expression

21-Oct-2005 cse413-07-structures © 2005 University of Washington 12

Expression tree example

(1 + (2 * (3 - 5)))infix notation

(+ 1 (* 2 (- 3 5)))Scheme prefix notation
+

1 *

2 -

3 5

expression tree

21-Oct-2005 cse413-07-structures © 2005 University of Washington 13

Represent expression with a list
• For this example, we are restricting the type of

expression somewhat
» Operators in the tree are all binary
» All of the leaves (operands) are numbers

• Each node is represented by a 3-element list
» (operator left-operand right-operand)

• Recall that the operands can be
» numbers (explicit values)
» other expressions (lists)

21-Oct-2005 cse413-07-structures © 2005 University of Washington 14

Expressions as trees, trees as lists
+

1 *

2 -

3 5

logical expression tree

(list + 1 (list * 2 (list - 3 5)))

+

our data structure

(1+(2*(3-5)))

1

*

2

-

3

5

21-Oct-2005 cse413-07-structures © 2005 University of Washington 15

Constructors and accessors

(define (make-exp op left right)

(list op left right))

(define (operator exp)

(car exp))

(define (left exp)

(cadr exp))

(define (right exp)

(caddr exp))

(define a (make-exp + 1 2))

+

1 2

+

1

2

21-Oct-2005 cse413-07-structures © 2005 University of Washington 16

Evaluator

(define (eval-expr exp)

(if (not (pair? exp))

exp

((operator exp)

(eval-expr (left exp))

(eval-expr (right exp)))))

+

1

2

; note that this code expects the operators
; to be the actual functions, not text symbols

(eval-expr (make-exp + 1 2))

21-Oct-2005 cse413-07-structures © 2005 University of Washington 17

Symbols and expressions

• We've been using symbols and lists of symbols
to refer to values of all kinds in our programs

• Scheme evaluates the symbols and lists that we
give it
» numbers evaluate to themselves
» symbols evaluate to their current value
» lists are evaluated as expressions defining procedure

calls on a sets of actual arguments

(+ a 3)

(inc b)

21-Oct-2005 cse413-07-structures © 2005 University of Washington 18

Manipulating symbols, not values

• What if we want to manipulate the symbols,
and not the value of the symbols
» perhaps evaluate after all the manipulation is done

• We need a way to say "use this symbol or list
as it is, don’t evaluate it"

• Special form quote
>(define a 1)

>a => 1

>(quote a) => a

21-Oct-2005 cse413-07-structures © 2005 University of Washington 19

Special form: quote

(quote 〈〈〈〈datum〉〉〉〉)
or '〈〈〈〈datum〉〉〉〉

• This expression always evaluates to datum
» datum is the external representation of the object

• The quote form tells Scheme to treat the
given expression as a data object directly,
rather than as an expression to be evaluated

21-Oct-2005 cse413-07-structures © 2005 University of Washington 20

Quote examples
(define a 1)

a => 1

(quote a) => a

(define b (+ a a))

b => 2

(define c (quote (+ a b)))

c => (+ a b)

(car c) => +

(cadr c) => a

(caddr c) => b

a is a symbol whose value
is the number 1

b is a symbol whose value
is the number 2

c is a symbol whose value
is the list (+ a b)

21-Oct-2005 cse413-07-structures © 2005 University of Washington 21

quote can be abbreviated: '

'a => a

'(+ a b) => (+ a b)

'() => ()

(null? '()) => #t

'(1 (2 3) 4) => (1 (2 3) 4)

'(a (b (c))) => (a (b (c)))

(car '(1 (2 3) 4)) => 1

(cdr '(1 (2 3) 4)) => ((2 3) 4)

a single quote has the exact
same effect as the quote form

lists are easily expressed as
quoted objects

21-Oct-2005 cse413-07-structures © 2005 University of Washington 22

Building lists with symbols

• What would the interpreter print in response to
evaluating each of the following expressions?

(list 'a 'b)

(cons 'a (list 'b))

(cons 'a (cons 'b '()))

(cons 'a '(b))

'(a b)

a

b

(a b)

21-Oct-2005 cse413-07-structures © 2005 University of Washington 23

Building lists with symbols
• What would the interpreter print in response to

evaluating each of the following expressions?

(cons '(a) '(b))

(list '(a) '(b))

b

((a) b)

a

((a) (b))

a

b

21-Oct-2005 cse413-07-structures © 2005 University of Washington 24

Comparing items
• Scheme provides several different means of

comparing objects
» Do two numbers have the same value?

• (= a b) use (= ...) for numbers

» Are two objects the same object in memory?
• (eq? a b)

» Do two objects have the same value?
• (eqv? a b) use (eqv? ...) for everything else

» Do the corresponding elements have the same values?
• (equal? list-a list-b) applies eqv? recursively

21-Oct-2005 cse413-07-structures © 2005 University of Washington 25

(member item s)

; find an item of any kind in a list s

; return the sublist that starts with the item

; or return #f

(define (member item s)

(cond

((null? s) #f)

((equal? item (car s)) s)

(else (member item (cdr s)))))

(member 'a '(c d a)) => (a)
(member '(1 3) '(1 (1 3) 3)) => ((1 3) 3)
(member 'b '(a (b) c)) => #f
(member '(b) '(a (b) c)) => ((b) c)

21-Oct-2005 cse413-07-structures © 2005 University of Washington 26

Recall: Expression tree example

(1 + (2 * (3 - 5)))infix notation

(+ 1 (* 2 (- 3 5)))Scheme prefix notation
+

1 *

2 -

3 5

expression tree

21-Oct-2005 cse413-07-structures © 2005 University of Washington 27

Represent expression with a list
• Each node is represented by a 3-element list

» (operator left-operand right-operand)
• Operands can be

» numbers (explicit values)
» other expressions (lists)

• In previous implementation, operators were the
actual procedures
» This time, we will use symbols throughout

21-Oct-2005 cse413-07-structures © 2005 University of Washington 28

Expressions as trees, trees as lists
+

1 *

2 -

3 5

logical expression tree

'(+ 1 (* 2 (- 3 5)))

+

our data structure

(1+(2*(3-5)))

1

*

2

-

3

5

21-Oct-2005 cse413-07-structures © 2005 University of Washington 29

Constructor and accessor functions

(define (make-exp op left right)
(list op left right))

(define (operator exp)
(car exp))

(define (left exp)
(cadr exp))

(define (right exp)
(caddr exp))

+

1

2

(make-exp '+ 1 2)

21-Oct-2005 cse413-07-structures © 2005 University of Washington 30

eval-op and eval-expr

(define (eval-op op)

(cond

((eqv? op '^) expt)

(else (eval op))))

(define (eval-expr exp)

(if (not (list? exp))

exp

((eval-op (operator exp))

(eval-expr (left exp))

(eval-expr (right exp)))))

+

1

2

(eval-expr '(+ 1 2))

21-Oct-2005 cse413-07-structures © 2005 University of Washington 31

Traversing a binary tree

• Recall the definitions of traversal
» pre-order

• this node, left branch, right branch

» in-order
• left branch, this node, right branch

» post-order
• left branch, right branch, this node

+

1 *

2 -

3 5

(1+(2*(3-5)))

21-Oct-2005 cse413-07-structures © 2005 University of Washington 32

Output expression in post-fix order
(define (post-order exp)

(if (not (pair? exp))

(list exp)

(append

(post-order (left exp))

(post-order (right exp))

(list (operator exp)))))

(define f '(+ 1 (* 2 (- 3 5))))

(post-order f)

(1 2 3 5 - * +)

