Lists

CSE 413, Autumn 2005
Programming Languages

http://www.cs.washington.edu/education/courses/413/05au/

References

• Sections 2.2-2.2.1, Structure and Interpretation of Computer Programs

• Section 6.3.2, Revised^5 Report on the Algorithmic Language Scheme (R5RS)

Pairs are the glue

• Using cons to build pairs, we can build data structures of unlimited complexity
• We can roll our own
 » if not too complex or if performance issues
• We can adopt a standard and use it for the basic elements of more complex structures
 » lists

Rational numbers with pairs

• An example of a fairly simple data structure that could be built directly with pairs

(define (make-rat n d) (cons n d))
(define (numer x) (car x))
(define (denom x) (cdr x))

(make-rat 1 2)
Extensibility

- What if we want to extend the data structure somehow?
- What if we want to define a structure that has more than two elements?
- We can use the pairs to glue pairs together in a more general fashion and so allow more general constructions
 » Lists

Fundamental list structure

- By convention, a list is a sequence of linked pairs
 » car of each pair is the data element
 » cdr of each pair points to list tail or the empty list

List construction

```
(list a b c ...)
```

- list returns a newly allocated list of its arguments
 » the arguments can be atomic items like numbers or quoted symbols
 » the arguments can be other lists
- The backbone structure of a list is always the same
 » a sequence of linked pairs, ending with a pointer to null (the empty list)
 » the car element of each pair is the list item
 » the list items can be other lists
List structure

(define a (list 4 5 6))
(define b (list 7 a 8))

Rational numbers with lists

(define (make-rat n d)
 (list n d))
(define (numer x)
 (car x))
(define (denom x)
 (cadr x))

Examples of list building

(cons 1 (cons 2 '()))
(cons 1 (list 2))
(list 1 2)

Lists and recursion

- A list is zero or more connected pairs
- Each node is a pair
- Thus the parts of a list (this pair, following pairs) are lists
- And so recursion is a natural way to express list operations
• We can process each element in turn by processing the first element in the list, then recursively processing the rest of the list.

\[
\text{(define (length m)} \quad \begin{array}{l}
\text{if (null? m)} \quad \text{0} \\
\text{(+ 1 (length (cdr m)))}
\end{array}
\]

We can build a list to return to the caller piece by piece as we go along through the input list.

\[
\text{(define (reverse m)} \quad \begin{array}{l}
\text{(define (iter shrnk grow)} \quad \text{if (null? shrnk)} \\
\text{grow} \quad \text{(iter (cdr shrnk) (cons (car shrnk) grow))})
\end{array}
\]

\[
\text{(define (add-items m)} \quad \begin{array}{l}
\text{(if (null? m)} \quad \text{0} \\
\text{(+ (car m) (add-items (cdr m))))}
\end{array}
\]

\[
\text{(define (add-items m)} \quad \begin{array}{l}
\text{(if (null? m)} \quad \text{0} \\
\text{(+ (car m) (add-items (cdr m))))}
\end{array}
\]

\[
\text{(define (double-all m)} \quad \begin{array}{l}
\text{(if (null? m)} \quad \text{'} \\
\text{(+ 2 (+ 5 (+ 4 0))))}
\end{array}
\]
Variable number of arguments

- We can define a procedure that has zero or more required parameters, plus provision for a variable number of parameters to follow
 - The required parameters are named in the `define` statement as usual
 - They are followed by a "." and a single parameter name
- At runtime, the single parameter name will be given a list of all the remaining actual parameter values

```scheme
(define (same-parity x . y)
  ...
>
  (same-parity 1 2 3 4 5 6 7)
  (1 3 5 7)
>
  (same-parity 2 3 4 5 6 7)
  (2 4 6)
>
The first argument value is assigned to x, all the rest are assigned as a list to y
```

map

- We can use the general purpose function `map` to map over the elements of a list and apply some function to them

```scheme
(define (map p m)
  (if (null? m)
      '
    (cons (p (car m))
          (map p (cdr m))))

(define (double-all m)
  (map (lambda (x) (* 2 x)) m))
```