
10-Oct-2005 cse413-02-procedures © 2005 University of Washington 1

Procedures

CSE 413, Autumn 2005
Programming Languages

http://www.cs.washington.edu/education/courses/413/05au/

10-Oct-2005 cse413-02-procedures © 2005 University of Washington 2

References

• Sections 1.1.6-1.1.8, Structure and Interpretation of
Computer Programs

• Section 4.1, Revised5 Report on the Algorithmic
Language Scheme (R5RS)

10-Oct-2005 cse413-02-procedures © 2005 University of Washington 3

Combinations

• (operator operand operand)
• There are numerous pre-defined operators
• We can define our own, arbitrarily complex

operators (functions, procedures) as well
• This is a key capability by which we can

operate at higher levels of abstraction

10-Oct-2005 cse413-02-procedures © 2005 University of Washington 4

Recall the define special form

• Special forms have unique evaluation rules
• (define x 3) is an example of a special

form; it is not a combination
» the evaluation rule for a simple define is "associate

the given name with the given value"

10-Oct-2005 cse413-02-procedures © 2005 University of Washington 5

Define and name a variable

• (define 〈name〉 〈expr〉)
» define - special form
» name - name that the value of expr is bound to
» expr - expression that is evaluated to give the

value for name
• define is valid only at the top level of a

<program> and at the beginning of a <body>

10-Oct-2005 cse413-02-procedures © 2005 University of Washington 6

Define and name a procedure

• (define (〈name〉 〈formal params〉) 〈body〉)
» define - special form
» name - the name that the procedure is bound to
» formal params - names used within the body of

procedure
» body - expression (or sequence of expressions)

that will be evaluated when the procedure is
called.

» The result of the last expression in the body will
be returned as the result of the procedure call

10-Oct-2005 cse413-02-procedures © 2005 University of Washington 7

Example definitions

(define pi 3.1415926535)

(define (area-of-disk r)

(* pi (* r r)))

(define (area-of-ring outer inner)

(- (area-of-disk outer)

(area-of-disk inner)))

10-Oct-2005 cse413-02-procedures © 2005 University of Washington 8

Defined procedures are "first class"

• Compound procedures that we define are used
exactly the same way the primitive procedures
provided in Scheme are used
» names of built-in procedures are not treated

specially; they are simply names that have been
pre-defined

» you can't tell whether a name stands for a
primitive (built-in) procedure or a compound
(defined) procedure by looking at the name or how
it is used

10-Oct-2005 cse413-02-procedures © 2005 University of Washington 9

Evaluation example

• (area-of-ring 4 1)

» evaluate operator area-of-ring => procedure
definition

» evaluate 4 => 4
» evaluate 1 => 1
» apply the procedure to the arguments

10-Oct-2005 cse413-02-procedures © 2005 University of Washington 10

Booleans
• Recall that one type of data object is boolean

» #t (true) or #f (false)

• We can use these explicitly or by calculating
them in expressions that yield boolean values

• An expression that yields a true or false value
is called a predicate
» #t => #t
» (< 5 5) => #f
» (> pi 0) => #t

10-Oct-2005 cse413-02-procedures © 2005 University of Washington 11

Conditional expressions

• As in all languages, we need to be able to
make decisions based on inputs and do
something depending on the result

• A predicate expression is evaluated
» true or false

• The consequent expression is evaluated if the
predicate is true

10-Oct-2005 cse413-02-procedures © 2005 University of Washington 12

Special form: cond

• (cond 〈clause1〉 〈clause2〉 ... 〈clausen〉)
• each clause is of the form

» (〈predicate〉 〈expression〉)
» where 〈predicate〉 is a boolean expression and 〈expression〉

is the consequent expression to execute if 〈predicate〉 is true
• the last clause can be of the form

» (else 〈expression〉)
» in which case 〈expression〉 is executed if none of the

preceding 〈predicates〉 were true

10-Oct-2005 cse413-02-procedures © 2005 University of Washington 13

Example: sign.scm
; return the sign of x as -1, 0, or 1

(define (sign x)

(cond

((< x 0) -1)

((= x 0) 0)

((> x 0) +1)))

also interest-rate.scm

10-Oct-2005 cse413-02-procedures © 2005 University of Washington 14

Special form: if

• (if 〈predicate〉 〈consequent〉 〈alternate〉)
• (if 〈predicate〉 〈consequent〉)

• 〈predicate〉 is a boolean expression
• 〈consequent〉 is the expression to execute if 〈predicate〉

is true
• 〈alternate〉 is the expression to execute if 〈predicate〉 is

false

10-Oct-2005 cse413-02-procedures © 2005 University of Washington 15

Examples : abs.scm, true-false.scm
; absolute value function

(define (abs a)

(if (< a 0)

(- a)

a))

; return 1 if arg is true, 0 if arg is false

(define (true-false arg)

(if arg 1 0))

10-Oct-2005 cse413-02-procedures © 2005 University of Washington 16

Logical composition

• (and 〈e1〉 〈e2〉... 〈en〉)

• (or 〈e1〉 〈e2〉... 〈en〉)

• (not 〈e〉)

• Scheme interprets the expressions ei one at a time in
left-to-right order until it can tell the correct answer
» ie, these are short-circuit operators

10-Oct-2005 cse413-02-procedures © 2005 University of Washington 17

in-range.scm

; true if val is lo <= val <= hi

(define (in-range lo val hi)

(and (<= lo val)

(<= val hi)))

10-Oct-2005 cse413-02-procedures © 2005 University of Washington 18

Newton's method for square root

• Guess a value y for the square root of x
• Is it close enough to the desired value ?

» ie, is y2 close to x?
• If yes, then done. Return recent guess.
• If no, then new guess is average of current

guess and
• Repeat with new guess

guess
x

2 x

10-Oct-2005 cse413-02-procedures © 2005 University of Washington 19

sqrta.scm
; Square root using Newton's method

(define (average a b)
(/ (+ a b) 2.0))

(define (good-enough? guess x)
(< (abs (- (* guess guess) x)) 0.001))

(define (improve guess x)
(average guess (/ x guess)))

(define (sqrt-iter guess x)
(if (good-enough? guess x)

guess
(sqrt-iter (improve guess x) x)))

(define (sqrta x)
(sqrt-iter 1.0 x))

10-Oct-2005 cse413-02-procedures © 2005 University of Washington 20

auxiliary functions
; Square root using Newton's method

(define (average a b)
(/ (+ a b) 2.0))

(define (good-enough? guess x)
(< (abs (- (* guess guess) x)) 0.001))

(define (improve guess x)
(average guess (/ x guess)))

10-Oct-2005 cse413-02-procedures © 2005 University of Washington 21

iterator and main functions

(define (sqrt-iter guess x)
(if (good-enough? guess x)

guess
(sqrt-iter (improve guess x) x)))

(define (sqrta x)
(sqrt-iter 1.0 x))

10-Oct-2005 cse413-02-procedures © 2005 University of Washington 22

sqrt-iter
• Our first example of recursion
• Note that this recursion is used to implement a

loop (an iteration)
» We will see this over and over in Scheme

• Iteration is calling the same block of code with a
changing set of parameters

• The syntax of the procedure is recursive but the
resulting process is iterative
» more on this next lecture

