
CSE 413 - Au 05 - Final Review - Postscript 9-Dec-2005

DWJohnson Page 1 of 3

Postscript

Postscript is both a programming language and a graphical page description language.

Page Description

Important elements of the Postscript imaging model include the current page, the current path,
and the clipping path. There is an extensive set of graphic environment settings that influence
how marks are actually made on the page.

The current page is independent of the page on which the image will actually be drawn. The
drawing is specified in a user coordinate system with the origin (0,0) at the lower left corner.
The units of the user coordinate system represent approximately 1/72 inch (1 point) unless
scaled. User coordinates are mapped to device coordinates when the image is drawn.

The current path is a set of points, lines, and curves that defines a path through user coordinate
space. Basic path operators include newpath, closepath, moveto, and rmoveto. Operators that
create potentially visible line segments include lineto, rlineto, arc, arcn, arct, arcto, curveto,
and rcurveto.

Another way to define the current path is with the text operators. The simplest method is to set a
current font (findfont, scalefont, setfont or selectfont), provide a string defining the characters
to display, and then show the characters in the given font. The show operator causes the
characters to be displayed. There are numerous operations that can be done to manipulate the
character outlines and use them the way you would any other path.

Basic inking operations can use the path to stroke the path or fill in the areas that it defines.

The clipping path is another path that defines the boundary of the area that may be drawn upon.
It may be set to any path and can be used to create a wide variety of effects.

The operators gsave and grestore are used to take and retrieve a snapshot of the current graphics
state. The graphics state includes the current path and numerous state variables such as gray
value, line width, and user coordinate transformation.

Programming Language

Postscript is a stack oriented, interpreted, post-fix language. The operators of the language
implement the standard capabilities of most programming languages, and hence Postscript can be
used to implement a wide variety of programs. Generally, the programming flexibility of
Postscript is used to support its page description role in life.

The language uses stacks in several contexts. The most obvious usage is the operand stack. Any
operator that needs arguments gets them from the top of the stack. Any operator that returns
results does so by pushing them on the stack. The push and pop operations are generally implicit

CSE 413 - Au 05 - Final Review - Postscript 9-Dec-2005

DWJohnson Page 2 of 3

in the operator, although the pop operator can be used to clear the top element from the stack.
There are several operators to move the top few elements around and change their order.

Postscript data types include numerics (real, integer), booleans, strings, and arrays. Procedures
are executable arrays of operands and operators.

Operators

There are many predefined operators in Postscript. Common arithmetic operators that you
should be familiar with include add, div, mul, sub, abs, cos, and sin. Common stack operators
include dup, exch, pop, and roll. The comparison operators are eq, ne, gt, lt, ge, and le. The
logical operators are not, and, or, xor, true, and false.

There are also some interactive operators for use while debugging. == pops the top of the
operand stack and prints it on the screen. pstack prints the contents of the entire stack but does
not change the stack itself.

Dictionaries

Postscript stores the definitions of variables, operators, and procedures in dictionaries. A
dictionary is a hashmap, just like the hashmaps in Java. Each entry has a key and a value. When
Postscript encounters a word while interpreting a program it looks up the word in a dictionary
and uses the associated definition.

Entries in a dictionary are made with the def operator. The syntax is /key value def. The value
can be any valid Postscript type.

There are always at least three dictionaries defined: user dictionary, global dictionary, and the
system dictionary. Program defined symbols go in the current dictionary, which is usually the
user dictionary. The system dictionary is read-only and contains the predefined operators.
References to the dictionaries are kept on the dictionary stack, with the user dictionary on top.
Postscript searches the dictionaries from the top down when looking for a reference.

Arrays

Arrays are 1-dimensional collections of objects. Indexes start at 0. Postscript arrays are similar
to Java arrays of Objects in that they can hold any type of reference object, but they also can hold
simple objects like integers and reals directly. Arrays can be created by giving the elements of
the array in square brackets. For example: [1 2 3] creates an array with three elements. Arrays
can also be created with the "n array" operator which creates an empty array of n elements. The
get and put operators can be used to retrieve and store data in an array.

CSE 413 - Au 05 - Final Review - Postscript 9-Dec-2005

DWJohnson Page 3 of 3

Virtual Memory

The Postscript environment includes stacks and virtual memory. The operand stack contains
simple objects (eg, integers) and references to composite objects (eg, strings, arrays). Virtual
memory (VM) is a storage pool for the values of all composite objects.

Local VM with save/restore pairs is used to encapsulate information whose lifetime conforms to
a hierarchical structure like a page. The save operator makes a snapshot of local VM. The
restore operator throws away the current local VM and restores the state from the last save.

Procedures

As described above, symbols are associated with names using the def operator. This works for
procedures as well as variables. The value of the procedure is the contents of an executable
array. The operations to be included in the procedure body are specified between opening and
closing curly brackets. To use the procedure, you push the arguments it will need on to the
operand stack, then give the name of the procedure. Postscript looks up the definition of the
procedure in the dictionary, then executes the body. Procedure calls can be recursive.

Control flow

Executable arrays, specified just as they are for procedure definitions, are the basic building
block of the flow control operators in Postscript.

The if and ifelse operators take a boolean and one (or two) executable arrays as operands. If the
boolean is true the first block is executed, if it is false then the second block is executed (for
ifelse).

The repeat operator executes a block a given number of times. The for operator takes four
values on the stack: initial increment limit body, and executes body until incrementing initial
causes it to be greater than limit. The current loop control value is pushed on the stack before
each iteration.

The loop and exit operators work together. loop takes one value on the stack, an executable
array. The body of the array is executed until an exit statement is encountered.

