
24-Oct-2003 cse413-08-postscript © 2005 University of Washington 1

Postscript Intro

CSE 413, Autumn 2005
Programming Languages

http://www.cs.washington.edu/education/courses/413/05au/

24-Oct-2003 cse413-08-postscript © 2005 University of Washington 2

References

• Postscript Language Reference, Adobe
• Postscript Language Tutorial and Cookbook, Adobe
• Adobe's Postscript web site

» http://www.adobe.com/products/postscript/main.html

• Postscript resources, Jim Land
» http://www.geocities.com/SiliconValley/5682/postscript.html

• Postscript resources, Doug Zongker (UW)
» http://isotropic.org/uw/postscript/

• First Guide to PostScript, Peter Weingartner
» http://www.cs.indiana.edu/docproject/programming/postscript/postscript.html

24-Oct-2003 cse413-08-postscript © 2005 University of Washington 3

What is Postscript?

• Page description language
» device independent way of representing a 2D page
» emphasis on scalable text, graphics presentation

• Simple programming language
» stack oriented
» interpreted

• Fundamental tool for 2D display

images from Doug Zongker papers

Hello World! in Ghostscript

24-Oct-2003 cse413-08-postscript © 2005 University of Washington 5

Hello World! in GSView
%!PS
/Times-Roman findfont 50 scalefont setfont
72 720 moveto
(Hello, World!) show
showpage

24-Oct-2003 cse413-08-postscript © 2005 University of Washington 6

Page Description Language

• Graphics operators
• Text

» any position, orientation, scale
• Geometric figures

» straight and curved lines
» filled spaces

• Sampled images
» digitized photos, sketches, images

24-Oct-2003 cse413-08-postscript © 2005 University of Washington 7

Imaging Model ...

• Current page
» independent of the device on which the image will

actually be drawn - device independence
» starts out empty, then painting operators are used

to add opaque inking to the page
• Current path

» set of points, lines and curves
» path itself is not a mark on the page, it's just a path
» inking is done by stroking and/or filling the path

24-Oct-2003 cse413-08-postscript © 2005 University of Washington 8

... Imaging Model

• Clipping path
» boundary of the area that may be drawn upon
» starts out matching the size of the default page area
» may be set to any path

24-Oct-2003 cse413-08-postscript © 2005 University of Washington 9

Coordinate Systems

• A Postscript program describes positions in terms
of the user coordinate system or user space
» independent of the printer's device coordinates
» units are 1/72 inch, approximately one point

• Positions on a page are described as (x,y) pairs in
a coordinate system imposed on the page
» this is the device space

• Coordinates in user space are automatically
translated to device space when the page is printed

24-Oct-2003 cse413-08-postscript © 2005 University of Washington 10

User Coordinates
/boxpath {
newpath
0 0 moveto
0 72 rlineto
72 0 rlineto
0 -72 rlineto
closepath
} def

36 700 translate
boxpath
0 setgray
fill

72 -14.14 translate
45 rotate
boxpath
2 setlinewidth
0.8 setgray
stroke

24-Oct-2003 cse413-08-postscript © 2005 University of Washington 11

Programming Language ...
• A nice and relatively compact programming

language
• Stack oriented

» operand stack, dictionary stack
• Postfix notation

» operators work on data from the stack
» 3+4 ⇒ 3 4 add
» describe a bezier curve ⇒

72 720 moveto 82 750 92 690 102 720 curveto

24-Oct-2003 cse413-08-postscript © 2005 University of Washington 12

... Programming Language
• Data Types

» includes reals, booleans, arrays, strings
» procedures are executable arrays

• Flexible
» dictionaries to store user defined objects
» static and dynamic graphics capabilities

• Accessible source
» Printable file is actually just a text program that

can be edited with any text editor

24-Oct-2003 cse413-08-postscript © 2005 University of Washington 13

Stack

• The stack is an area of memory where Postscript
objects can be stored until consumed
» last in, first out
» push and pop are generally implicit. Numbers are

always pushed as they are encountered. Operators
can consume objects off the stack and push new
objects onto the stack

» several operators work directly on the stack to move
the top few elements around

24-Oct-2003 cse413-08-postscript © 2005 University of Washington 14

Stack operation

GS>5 27
GS<2>pstack
27
5
GS<2>add
GS<1>pstack
32
GS<1>

stack is empty
push 5, then 27

2 objects on the stack print stack

add top two objects,
leaving the result on
the stackone object on stack

24-Oct-2003 cse413-08-postscript © 2005 University of Washington 15

Operators

• An operator is a word that causes the
Postscript interpreter to carry out some action

• PS searches internal dictionaries to see if the
word is an operator name
» If listed, PS looks up the associated definition and

executes it
» Many predefined operators
» Can define new operators as needed

24-Oct-2003 cse413-08-postscript © 2005 University of Washington 16

Defined Arithmetic Operators

• Predefined arithmetic operators include
» add, div, idiv, mod, mul, sub
» abs, neg
» ceiling, floor, round, truncate
» sqrt
» atan, cos, sin, exp, ln, log
» rand, srand, rrand

24-Oct-2003 cse413-08-postscript © 2005 University of Washington 17

Stack operations

• Objects on the operand stack are consumed
from the top: last in, first out
» 6 + (3 / 8)
» 6 3 8 div add

6
3
8

6
.375

div

6.375

add6 3 8GS>6 3 8
GS<3>div
GS<2>add
GS<1>=
6.375
GS>

24-Oct-2003 cse413-08-postscript © 2005 University of Washington 18

Stack operations
Postscript also allows you to rearrange and duplicate the
top elements of the stack so that the needed operands
are on top

GS>4 5 % stack has two objects on it now
GS<2>2 array % Create a 2-element array and leave reference on stack
GS<3>dup % duplicate the reference
GS<4>0 % we are going to set element 0
GS<5> % stack is now: 4 5 arr arr 0
GS<5>5 -1 roll % stack is now: 5 arr arr 0 4
GS<5>put % stack is now: 5 arr
GS<2>dup 1 % stack is now: 5 arr arr 1
GS<4>4 -1 roll % stack is now arr arr 1 5
GS<4>put % stack is now: arr
GS<1>pstack
[4 5]
GS<1>

24-Oct-2003 cse413-08-postscript © 2005 University of Washington 19

dup, pop and roll
• dup

» duplicate the top item on the stack. Useful for array
references that are consumed by operations like put and get

• pop
» remove top element from stack and discard

• roll
» roll stack contents. Consumes two numbers from top of

stack. Top number is how many times and what direction
to rotate, second number is how many objects are to be
rotated
• 7 8 9 3 1 roll ⇒ 9 7 8
• 7 8 9 3 -1 roll ⇒ 8 9 7

24-Oct-2003 cse413-08-postscript © 2005 University of Washington 20

Operand Stack Operators

• pop
• exch
• dup, copy, index
• roll
• clear, count
• mark, cleartomark, counttomark

24-Oct-2003 cse413-08-postscript © 2005 University of Washington 21

Interactive Operand Stack Operators

• ==
» pops an object from the stack and produces a text

representation of the object as best it can
• pstack

» prints the contents of the stack, but does not
remove anything from the stack

24-Oct-2003 cse413-08-postscript © 2005 University of Washington 22

Arrays

• Postscript arrays are 1-dimensional collections
of objects
» indexed from 0
» objects can be of any type - integers, strings, other

arrays, dictionaries, etc
• Similar to Object arrays in Java, although

Postscript arrays can hold primitive elements
as well as reference elements

24-Oct-2003 cse413-08-postscript © 2005 University of Washington 23

Creating an array

• An array can be created by directly specifying
the elements enclosed in square brackets
» [16 (twelve) 8] creates a 3-element array

• number 16, string "twelve", number 8

» [(sum) 6 14 add] creates a 2-element array
• string "sum", number 20
• note that the operator add is executed

• An array can be created with the array operator
» 3 array creates a 3-element array of all null

24-Oct-2003 cse413-08-postscript © 2005 University of Washington 24

Array example
GS>[1 2 3]
GS<1>pstack
[1 2 3]
GS<1>3 array
GS<2>pstack
[null null null]
[1 2 3]
GS<2>dup 0 (Hi!) put
GS<2>pstack
[(Hi!) null null]
[1 2 3]
GS<2>exch dup 2 333 put
GS<2>pstack
[1 2 333]
[(Hi!) null null]
GS<2>

create an array

create an empty arrayThere are now two
array references on
the stack.

set element 0 to string

set element 2 to 333

24-Oct-2003 cse413-08-postscript © 2005 University of Washington 25

Array bracket operators

[
» put a mark on the stack. The following elements

are going to be scooped up in an array
]

» create an array containing all elements back to the
topmost mark. The array is created on the heap in
virtual memory, and an array reference is left on
the stack

example: [1 1 1 add] ⇒ 2-element array : [1 2]

24-Oct-2003 cse413-08-postscript © 2005 University of Washington 26

Array operators put and get
• array index any put

» puts any at index of array
» removes all three objects from the stack

• array index get
» gets the object at index of array
» removes both objects from the stack and returns

the indexed element on the top of the stack
• Note that if you want to use the array reference

again you need to dup it or name it

24-Oct-2003 cse413-08-postscript © 2005 University of Washington 27

Array operators

• array, [,]
• length
• get, put, getinterval, putinterval
• astore, aload, copy
• forall

GS>0 [1 2 3] {add} forall ==
6
GS>

