
CSE 413 – AU 05 – Programming Languages Homework 7

 Page 1 of 11

1. fm language compiler

For this assignment (finally, the last part of the compiler!), you will add code to the parser that you
wrote in hw6 so that it generates an actual executable program (in the Postscript language).

The implementation plan is that the code generation is included directly in the parser at the
appropriate points as the parser discovers the structure of the program. The generated code is fairly
straightforward, since it is mostly expression evaluation and function calls.

2. Grading

The parser code that you wrote for hw6 is the basis for hw7. Since it is possible that your parser is
not complete, the grading for homework 7 is a little different from previous assignments.

One half of the score for hw7 will be for just the parser, ie, the same assignment as hw6. So if your
hw6 parser still has problems, you can try to finish it up and turn it in for hw7 for half credit. The
second half of hw7 credit is the new code generation capability. So if you turn in just a parser for
hw7, we will grade that and use that score as half of your hw7 score. If you also attempt to add the
code generation capabilities, we will also grade that and use that as the remaining half of your hw7
score.

3. Java classes

java class Flip

This is the main program for the compiler. It is very similar to ParseTest.java from hw6. There are
several command line switches that can be used to control various aspects of the output, including
method entry/exit tracing, symbol definition, and echoing source lines.

java class Parser

This is the only class that needs to be modified for this assignment. I have provided the javadoc for
my implementation of the entire compiler, including private methods, so you may want to compare
them with your own. There is NO requirement that your implementation match mine, but it might
be helpful to review the javadoc if you are trying to work out some details in your parsing.

CSE 413 – AU 05 – Programming Languages Homework 7

 Page 2 of 11

4. Generating the code to be emitted

The methods in this section generate the code and emit it during the parsing process, using the
utility methods defined in the last section. This is relatively straightforward but somewhat tedious.
We are implementing the "semantic actions" associated with the syntax when we do this.

a. in public boolean parse() (provided)

Use generateCode to write out the Postscript identifier string "%!PS-Adobe-3.0".

b. in private void parseProgram() (provided)

After matching the Token.ID that is the name of the movie, use
generateMovieStart(prevToken.getLabel()) to generate the beginning of file information as
described above under generateMovieStart.

After matching the Token.EOF that indicates the end of the source file, use generateMovieEnd() to
generate the end of file information as described above under generateMovieEnd.

c. in private void parseMovieBody() (provided)

Before parsing anything else, generate the beginning of the prolog. If there is a prolog block, parse
that. Generate the end of the prolog. Then parse the page blocks.

d. in parseVariableDeclaration() (provided in this discussion)

Here we actually generate some real code. The productions associated with this method are

11. variableDeclaration →→→→ id : type(); | id : type(exprList);

So, your method code has several calls to matchToken as you work your way through the
productions. You need to add code to generate a symbol declaration in Postscript. Let's assume
your code looks something like mine. Here's what the resulting method looks like (next page).

CSE 413 – AU 05 – Programming Languages Homework 7

 Page 3 of 11

private void parseVariableDeclaration() {

traceEntry();
try {

matchToken(Token.ID);
Symbol var = new Symbol(prevToken.getLabel(),Symbol.VARIABLE);
symbolTable.putSymbol(SC_VARIABLE,var.getLabel(),var);
matchToken(Token.COLON);
generateCode("/"+var.getLabel()); // ps literal symbol
matchToken(Token.ID);
String type = prevToken.getLabel();
var.putAttribute("CLASSNAME",type);
matchToken(Token.LPAREN);
if (theToken.getType()!=Token.RPAREN) {

parseExprList();
}
matchToken(Token.RPAREN);
generateCode(type+"."+type+" def"); // call constructor and store result
traceSymbol(var);
matchToken(Token.SEMICOLON);

}
catch (SyntaxException e) {

processSyntaxException(e);
}
traceExit();

}

Notice that various actions are taken as we know the information needed.

First of all, once we have decoded the name of the variable, we can generate the beginning of the
Postscript definition statement. This has the form "/name value def". So when we know the name
of the variable, we write out "/name".

The Token.ID that follows the colon is the type of the variable, so we parse that and save the result
as an attribute of the Symbol. The attribute is called CLASSNAME, and we store that for later use.

Then we parse the expression list if there is one. The Postscript to implement that expression list is
emitted during the parsing, so we don't need to worry about it here.

Finally we match the right paren, and generate the call to the appropriate constructor followed by
the Postscript operator def. The name of the constructor is the name of the type, followed by a dot,
followed by the name of the type again, eg. Integer.Integer. For example, the first variable
declaration in StickBoy.fm is:

outline : Box(540,720);

and this generates the Postscript code:

/outline
540
720
Box.Box def

CSE 413 – AU 05 – Programming Languages Homework 7

 Page 4 of 11

e. in parsePageBlock()

The production associated with pageBlock is

13. pageBlock → show (integer) { pageStatements }

The show statement executes all the pageStatements for however many pages are specified. One
feature of conventionally structured Postscript files is that each page of the document must stand
alone. Consequently, you can't carry a variable value over from page to page. The only thing that
you can assume is that the prolog has been executed.

The way I chose for us to implement this is to parse all the pageStatements and emit the code to the
buffer, then copy that code over and over for however many pages were specified, with appropriate
header and footer code to mark each page.

The number of pages to be generated is given by the integer in parens. So after you parse this
integer token, you need to extract the value and store it in a local variable that you can use for loop
control later. Something like "int nPages = prevToken.getIntValue();" will do the trick.

After matching the Token.LCURLY, and before parsing the pageStatements, you need to call
openBuffer so that the pageStatement code is emitted to the buffer. After parsing the
pageStatements with parsePageStatements, and matching the Token.RCURLY, you call
closeBuffer.

At this point, you have parsed and compiled all the code in the pageBlock that describes the pages,
but you have not written it out to the Postscript output file.

We keep track of the current page number using a Symbol defined and updated by the Parser. This
Symbol is named pageNumber, and can be referenced by the fm code just as though it were a user
declared variable. The initial value is 0, set in the Parser constructor, but it is updated in our
SymbolTable and in the generated Postscript code before each page is written to the output file.

You can get the current value of pageNumber from the SymbolTable like this:

Symbol pc = symbolTable.getSymbol(SC_VARIABLE,"pageNumber");
int count = ((Integer)pc.getAttribute("value")).intValue();

So we now have all the information needed to write the code for each page of the pageBlock. If
showCode is enabled, the method should loop nPages times and generate the following code:

1. The beginning of a page. This code is written with one or more calls to generateCode. The

code comprises a DSC comment identifying the page, the Postscript save operator, and a
definition of the pageNumber variable. For example, the first page of StickBoy.ps starts with
the following code (next page).

CSE 413 – AU 05 – Programming Languages Homework 7

 Page 5 of 11

%%Page: x.1 1
save
/pageNumber 1 def

The variable parts are the page number (x.1 and 1) in the %%Page line, and the page number
(1) in the pageNumber definition line.

2. Whatever code is in the buffer. This code is copied to output with a call to emitBuffer.
3. The end of a page. This code is written with one or more calls to generateCode. The code

comprises the Postscript restore and showpage operators. For example, the first page of
StickBoy.ps ends with the following code:

restore
showpage

The page number that is written out in each case is count+k, where count is the number of pages
previously written and k is the page within the current page block. After writing out all the pages in
this page block, you need to update the value of pageNumber in the SymbolTable so that it is
correct if another pageBlock is compiled.

pc.putAttribute("value",new Integer(count+nPages));

f. in parsePageStatement()

Here we generate some more executable code. The productions associated with pageStatement are:

 15. pageStatement →
 { pageStatements }

| methodCall;
| id = expr;

 | if (boolExpr) pageStatement
 | if (boolExpr) pageStatement else pageStatement

Nothing special needs to be generated for the pageStatements non-terminal.

For the two "if" productions, we need to generate a Postscript "if" or "ifelse" statement. The format
of such a statement is "boolean procedure if" or "boolean procedure1 procedure2 ifelse".
Procedures in Postscript are surrounded by curly brackets "{" and "}".

The process for an "if" statement is as follows. After matching Token.KW_IF and
Token.LPAREN, we parse the boolExpr. This will emit the code to generate a boolean value. We
then use generateCode to write out a left curly "{". Following this, we parse the pageStatement that
is executed if the boolean is true using parsePageStatement, and then use generateCode to write out
a right curly "}".

CSE 413 – AU 05 – Programming Languages Homework 7

 Page 6 of 11

If the next token is Token.KW_ELSE, we need to generate procedure2 for the false condition. To
do this, we use generateCode to write out a left curly "{", parse the pageStatement that is executed
if the boolean is false, and then use generateCode to write out a right curly "}".

Following this the parser uses generateCode to write out the correct operator, either if or ifelse.

The two remaining productions both start with a Token.ID. This ambiguity could be fixed by a left-
factor rewrite of the grammar, but I chose to just do a little ad-hoc fix in the code.

case Token.ID: { // Either a method call or an assignment
matchToken(Token.ID);
Token t = prevToken; // remember the id at the beginning
if (isFirst(theToken,"callEnd")) { // start of a method call or ...

parseCallEnd(t);
matchToken(Token.SEMICOLON);

} else { // ... an assignment statement
matchToken(Token.OP_ASSIGN);
generateCode("/"+t.getLabel());
parseExpr();
generateCode("def");
matchToken(Token.SEMICOLON);

}
}

Notice that the Token describing the id at the beginning of the statement is passed down to
parseCallEnd so that the procedure call can be formatted correctly.

The assignment statement is simply another def expression starts with /name, followed by the right
hand side expression followed by the Postscript def operator.

g. in parseExprTail()

This is where we generate the additive expression operators. The relevant production is

16.2 exprTail → + term exprTail | - term exprTail | ε

The associated code looks something like this:

try {
if (isFirst(theToken,"exprTail")) {

matchTokenArray((int[])firstSets.get("exprTail"));
Token opToken = prevToken;
parseTerm();
generateCode(operator(opToken));
parseExprTail();

}
}

Notice that we match the operator token (Token.OP_ADD or Token.OP_SUB) but don't emit the
code right away. Postscript is a postfix language, so we parse and emit the term, then emit the

CSE 413 – AU 05 – Programming Languages Homework 7

 Page 7 of 11

proper operator. The "operator(opToken)" method just returns the correct Postscript operator for
the given token, eg, for Token.OP_ADD it returns "add".

h. in parseTermTail()

This method is very similar to parseExprTail. The relevant production is

17.2 termTail → * factor termTail | / factor termTail | ε

i. in parseFactor()

Now we are actually emitting the values that form the expressions. The relevant production is

18. factor → integer | real | (expr) | id | methodCall

For a Token.INTEGER, we just emit the integer value that was parsed. So we have something like:

case Token.INTEGER: {
matchToken(Token.INTEGER);
generateCode(Integer.toString(prevToken.getIntValue()));
break;

}

Token.REAL is very similar.

For Token.ID, we have to distinguish between a method call and a reference to a variable by itself,
just as we did for the assignment statement. Again, I chose to distinguish them in the code, rather
than a grammar rewrite. The result can look something like this:

case Token.ID: {

matchToken(Token.ID);
Token t = prevToken; // remember the id at the beginning
if (isFirst(theToken,"callEnd")) { // start of a method call or ...

parseCallEnd(t);
} else { // ... a variable by itself

Symbol var = symbolTable.getSymbol(SC_VARIABLE,t.getLabel());
if (var == null) {

throw new SyntaxException("Variable must be declared before use: "+t.getLabel());
}
generateCode(t.getLabel());

}
break;

}

j. in parseCallEnd(Token t)

There are two kinds of method calls defined in fm, those that are standard Postscript functions (ie,
they do not refer to a particular variable) and those that are instance methods (ie, they refer to a
particular variable). The relevant production is

19. methodCall → id() | id(exprList) | id.id () | id.id(exprList)
19.1 methodCall → id callEnd

CSE 413 – AU 05 – Programming Languages Homework 7

 Page 8 of 11

19.2 callEnd → () | (exprList) | .id() | .id(exprList)

Since the initial Token.ID has already been matched before we get to parseCallEnd, that token is
passed into the method.

The standard Postscript functions do not use the dot notation and have no notion of an associated
variable. Thus the implementation is relatively simple. Match the Token.LPAREN, parse the
exprList if any (which will emit the appropriate code for the method arguments), match the
Token.RPAREN, and then emit the name of the method to call using generateCode(t.getLabel()).
For example, the expression abs(3) is compiled to

3
abs

The instance methods are a little more complicated because we need to know the variable, the
method name, and the variable type in order to generate the call correctly. My implementation of a
call to an instance method looks like this:

} else if (theToken.getType()==Token.DOT) { // id.id(), id.id(exprList) or ...

matchToken(Token.DOT);
matchToken(Token.ID);
Token t2 = prevToken;
matchToken(Token.LPAREN);
if (theToken.getType()!=Token.RPAREN) {

parseExprList();
}
matchToken(Token.RPAREN);
Symbol var = symbolTable.getSymbol(SC_VARIABLE,t.getLabel());
if (var == null) {

throw new SyntaxException("Variable must be declared before use: "+t.getLabel());
}
String type = (String)var.getAttribute("CLASSNAME");
if (type == null) {

throw new SyntaxException("Object reference must have defined class type: "+t.getLabel());
}
generateCode(t.getLabel()); // the variable (ie, "this")
generateCode(type+"."+t2.getLabel()); // the class method

} else { // an error

For example, the expression outline.draw(30,50); in StickBoy.fm is compiled to the following:

30
50
outline
Box.draw

k. in parseBoolExpr()

This is pretty simple, since the only actual code here is the not operator. If the expression starts
with !, then we match Token.OP_NOT, remember the operator, match Token.LPAREN, parse the
relExpression (which will emit the code needed to evaluate the relative expression), match
Token.RPAREN, and then generateCode(operator(opToken)) which will emit the not operator.

If the boolExpr does not start with !, then we just parseRelExpr and let it do the work.

CSE 413 – AU 05 – Programming Languages Homework 7

 Page 9 of 11

l. in parseRelExpr()

This is also pretty simple. We just need to move the operator to the end to conform to postfix
notation and generate the appropriate Postscript operator.

try {
parseExpr();
matchTokenArray(new int[] {Token.OP_EQ,Token.OP_GT,Token.OP_LT});
Token opToken = prevToken;
parseExpr();
generateCode(operator(opToken));

}

CSE 413 – AU 05 – Programming Languages Homework 7

 Page 10 of 11

5. Utility methods in Parser.java (all these methods are provided)

Postscript files are organized according to the Document Structuring Conventions (DSC). A simple
document starts with several lines of comments. For example, StickBoy.ps starts with:

%!PS-Adobe-3.0
% movie StickBoy {

The first line identifies the file as Postscript. It is the same for every Postscript file and is written
out with a call to generateCode in the parse method. The second line is the echoed source
code from the file, written out when the source line is read in (assuming that CompilerIO
setEchoing(true) has been called).

The following additions to the Parser class all generate Postscript code one way or another.

a. private void generateCode(String code)

If setShowCode(true) has been called, this method calls the CompilerIO emit method
with the code string it is provided. It is up to the calling routine to define the proper string. There is
a discussion later on in this writeup about how to actually create the Postscript code.

b. private void generateMovieStart(String title)

%%Title: StickBoy
%%Pages: (atend)
%%EndComments

These are the third, fourth, and fifth lines at the start of the StickBoy.ps file. They are generated by
the generateMovieStart method and written out with the CompilerIO emit method (if
showCode is enabled). The title string, in this case "StickBoy", is written as part of the title line.
The other two lines are the same for every file. There is a discussion later of exactly how to call
this method.

c. private void generateMovieEnd()

The Postscript file ends with a few DSC comments that wrap it up. For example, StickBoy.ps ends
with

%%Trailer
%%Pages: 40
%%EOF

These lines are generated by generateMovieEnd. The only variable portion is the number of
pages which is tracked throughout the Parser. The technique for doing this is described later.

CSE 413 – AU 05 – Programming Languages Homework 7

 Page 11 of 11

d. private void generatePrologStart()

Every Postscript file that our programs generate will have a "prolog", a section that applies to all
pages of the document. The beginning of this section is the same for every document, so we can put
the code in a file and copy it to the output object file. If showCode is enabled, then method
generatePrologStart copies the contents of FlipPrologStart.ps to the output file using
emitFile.

e. private void generatePrologEnd()

Similarly, the end of every prolog is the same for every document, so we put the code in a file and
copy it using emitFile if showCode is enabled. The file to copy is FlipPrologEnd.ps.

f. private String operator(Token t)

/**
* Convert an operator token into the appropriate postscript name
* @param t the Token containing the operator
* @return the equivalent postscript operator
*/
private String operator(Token t) {

String s = "UNKNOWNOPERATOR";
if (t == null) return s;
int op = t.getType();
if (op == Token.OP_NOT) s = "not";
else if (op == Token.OP_EQ) s = "eq";
else if (op == Token.OP_LT) s = "lt";
else if (op == Token.OP_GT) s = "gt";
else if (op == Token.OP_ADD) s = "add";
else if (op == Token.OP_SUB) s = "sub";
else if (op == Token.OP_MUL) s = "mul";
else if (op == Token.OP_DIV) s = "div";
return s;

}

