
CSE 413 – AU 05 – Programming Languages Homework 4

DWJohnson 16-Nov-05 Page 1 of 3

Note: Autumn 05. We skipped this assignment because of the way our schedule went this year.
However, I am distributing it and leaving it named Homework 4 so that the background for the
remaining assignments (HW 5, 6, and 7) is clear. You don’t have to do anything for this assignment
other than read it as background for the following assignments!

Introduction

The remaining homework assignments for this class will focus on building a compiler step by step.
The compiler will take source files in a simple language that we will define later called FM (for flip
movie) and will output Postscript files that describe the pages of a flip movie.

You should comment your code using javadoc style comments and run the javadoc utility to generate
the documentation for your code.

CompilerIO

For this assignment, you will design, implement and test a Java class CompilerIO that will handle input
and output for the compiler.

The idea behind this class is that the compiler will use a single CompilerIO object to manage input and
output, which will shield the rest of the compiler from the details of file handling. The input and output
files are ordinary text files.

Your CompilerIO class should meet the following requirements. There is also a javadoc page
describing the class included in the homework download.

CompilerIO constructors
CompilerIO(String srcName, String objX) throws IOException
CompilerIO(String srcName, String objName, String objX) throws IOException

When the compiler starts, it will create an instance of the CompilerIO class. The CompilerIO
constructor opens the input and output files and stores references to them for later use.

CompilerIO is required to have two constructors: CompilerIO(String srcName, String objX) and
CompilerIO(String srcName, String objName, String objX). If an exception occurs while opening the
files, the constructors should throw the exception and let the caller handle it.

The parameters for the two-argument constructor are the name of the input file and the extension for
the object file (the output file). The constructor creates the output file name by taking the input file
name (say test.fm) and replacing the extension with the given object extension objX (eg, giving
test.ps). Don't make assumptions about the extension in the input file name. It might be ".fm", but it
might also be ".txt" or something else. (Implementation hint: class String includes methods that locate
the first or last occurrence of a character or substring in a String.) If the input file name has no
extension, then a “.” and the given extension are just added to the input file name to create the output
file name. Once having created the output file name, the constructor opens both files to create a
BufferedReader object and a PrintWriter object and stores references in appropriate instance variables.

CSE 413 – AU 05 – Programming Languages Homework 4

DWJohnson 16-Nov-05 Page 2 of 3

The parameters for the three-argument constructor are the names of the input and output files and the
extension for the output file. If the extension is not null, then the given extension is added to the
output file name after a period. If the extension is null, then the output file name is used exactly as
given. The constructor opens both files. The input file name is used to create a BufferedReader
object, and the output file name is used to create a PrintWriter object. References to these objects are
stored in appropriate instance variables.

Temporary buffer management
void openBuffer(), void closeBuffer()

In addition to writing to the output file, there will be times when we want to emit generated code to a
temporary buffer so that we can later copy it to the output file several times.

Your class should implement openBuffer() and closeBuffer(). The openBuffer method creates a new
empty temporary PrintWriter for buffering and sets it to be the target of all the emit methods
(described next). closeBuffer() closes the temporary PrintWriter that we've been using to buffer the
output and switches back to the output file as the target of all the emit methods. This method
closeBuffer() must be called before using emitBuffer to copy the contents of the temporary buffer to
the output file.

Note that there at least two ways to implement this temporary buffer. You could use temporary files
(see File.createTempFile(...)) or you could use a StringWriter. Either approach is okay. Potential
exceptions may differ between the implementations.

Writing to the output file
void emit(String s), void emitWithPrefix(String s)
void emitBuffer(), void emitFile(String fileName)

This class manages the process of sending generated object code to the output file. In our case this will
be Postscript code. There are several methods defined.

emit(String s) writes the given String to the currently active PrintWriter (either the output file or the
buffer).

emitWithPrefix(String s) writes the defined prefix out then follows that with the given String on the
same line. The prefix is presumably the comment delimiter for the target object language. This lets us
write tracing information to the object file without causing execution errors. Also, when source lines
are echoed while being read, they are preceded by the prefix. See below for more discussion of this
prefix and the methods to control its use.

emitBuffer() writes the existing contents of the temporary buffer to the output file. This can only be
called when the buffer is closed. This method will return silently without doing anything if the buffer
is the currently active output PrintWriter.

emitFile(String fileName) copies an entire file to the currently active output Writer. This is a direct
copy and nothing is done to the file on the way out, ie, no prefix is applied.

CSE 413 – AU 05 – Programming Languages Homework 4

DWJohnson 16-Nov-05 Page 3 of 3

Reading from the input file
String readSrcLine() throws IOException

The scanner will use the CompilerIO object's readSrcLine() method to read the source program text.
readSrcLine() should throw an exception if an error occurs while reading. This method reads one line
of input from the input file and returns a String containing the contents of the line (not including any
line-termination characters) or null if the end of the stream has been reached.

In addition to the generated code, we will want to include in the output file the original source code as
comments to make the output easier to understand. So, besides just reading the input file,
readSrcLine() should be able to automatically print each input line to the output file as it is read, if
requested by the user.

Comment control
void setEchoing(boolean b), boolean getEchoing()
void setEchoPrefix(String s), String getEchoPrefix()

Instance variables (eg, echoing and echoPrefix)are used to control whether the input lines are
printed to the output file, and how. If echoing is true, then each input line should be written to the
output file at the time it is read, with the echoPrefix string concatenated to the front of it. The idea
behind echoPrefix is that we can set it to something appropriate so the echoed source program
lines copied to the output file are treated as comments in the generated program. You should provide
methods to get and set both of these properties.

Testing

You should write a separate test driver class named CompilerIOTest that exercises your CompilerIO
class and shows that it works correctly.

Turn in [Autumn 05: Does not apply]

You should turn in CompilerIO.java, CompilerIOTest.java, and the documentation page
CompilerIO.html generated by javadoc. The link for this turnin will be on the class calendar page.

