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Why Visualize Text?



Why Visualize Text?

Understanding - get the “gist” of a document
Grouping - cluster for overview or classification

Comparison - compare document collections, or
inspect evolution of collection over time

Correlation - compare patterns in text to those in
other data, e.g., correlate with social network



Text Visualization Challenges

High Dimensionality
Where possible use text to represent text...
... which terms are the most descriptive?

Context & Semantics

Provide relevant context to aid understanding.
Show (or provide access to) the source text.

Modeling Abstraction

Determine your analysis task.

Understand abstraction of your language models.
Match analysis task with appropriate tools and models.



Example:
Health Care Reform



Example: Health Care Reform

Background
Initiatives by President Clinton (1993)
Overhaul by President Obama (2009)

What questions might you want to answer?
What visualizations might help?



Obama on Health Care, 2009

September 10, 2009
TEXT

Obama’s Health Care Speech to Congress

Following is the prepared text of President Obama’s speech to Congress on the need to overhaul health care in the
United States, as released by the White House.

Madame Speaker, Vice President Biden, Members of Congress, and the American people:

When I spoke here last winter, this nation was facing the worst economic crisis since the Great Depression. We wer
losing an average of 700,000 jobs per month. Credit was frozen. And our financial system was on the verge of
collapse.

As any American who is still looking for work or a way to pay their bills will tell you, we are by no means out of the
woods. A full and vibrant recovery is many months away. And I will not let up until those Americans who seek jobs
can find them; until those businesses that seek capital and credit can thrive; until all responsible homeowners can
stay in their homes. That is our ultimate goal. But thanks to the bold and decisive action we have taken since
January, I can stand here with confidence and say that we have pulled this economy back from the brink.

I want to thank the members of this body for your efforts and your support in these last several months, and
especially those who have taken the difficult votes that have put us on a path to recovery. I also want to thank the
American people for their patience and resolve during this trying time for our nation.

But we did not come here just to clean up crises. We came to build a future. So tonight, I return to speak to all of yo



Tag Clouds: Word Count

President Obama’s Health Care Speech to Congress [Ny Times]
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Word Tree: Word Sequences

Visualizations : Word Tree President Obama's Address to Congress on Health Care
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Word Tree: Word Sequences

Visualizations : Word Tree President Obama's Address to Congress on Health Care

Search II will ] | Back | Forward (@) stat () End | Occurrence Order 4 | | Ciicks Wil Zoom 4 |
12 let up until those americans who seek jobs can find them - - ( applause ) - - until those businesses that seek
hits

back down on the basic principle that if americans can't find affordable coverage , we will provide you with a
a plan that adds one dime to our deficits - - either now or in the future .
sign
not it if it adds one dime to the deficit , now or in the future , period .
make that same mistake with health care .
I WI I I waste time with those who have made the calculation that it's better politics to Kill this plan than to improve it
- - and i will not accept the status quo as a solution .
accept the status quo as a solution .
make sure that no government bureaucrat or insurance company bureaucrat gets between you and the care that you need .
protect medicare .

continue to seek common ground in the weeks ahead .

be there to listen .



Gulfs of Evaluation

Many text visualizations do not represent the text
directly. They represent the output of a language
model (word counts, word sequences, etc.).

Can you interpret the visualization? How well does
it convey the properties of the model?

Do you trust the model? How does the model
enable us to reason about the text?



Text as Data



Taxonomy of Data Types (?)

1D (sets and sequences)
Temporal

2D (maps)

3D (shapes)

nD (relational)
HEEQIEEIIES)
Networks (graphs)

Are there others? The eyes have it: A task by data type

taxonomy for information visualization
[Shneiderman 96]



Unstructured Text

Words have meanings and relations
Correlations: Hong Kong, Puget Sound, Bay Area
Order: January, February, March, April, May, June
I\/Iembe I’Ship: Tennis, Running, Swimming, Hiking, Piano
Hiera rchy: Person > Applicant > Job Candidate, Submitter

Antonyms & synonyms



WordNet: Structure, Relations

WordNet Search - 3.1

Word to search for: |applicant | Search WordNet |

Display Options: [ (Select option to change) v|| Change |

Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations
Display options for sense: (gloss)

Noun

* S: (n) applicant, applier (a person who requests or seeks something such as
assistance or employment or admission)
o direct hyponym | full hyponym

« S: (n) aspirant, aspirer, hopeful, wannabe, wannabee (an ambitious
and aspiring young person)

» S: (n) bidder (someone who makes an offer)

» S: (n) claimant (someone who claims a benefit or right or title)

* S:(n) job candidate (an applicant who is being considered for a
job)

« S: (n) material (a person judged suitable for admission or
employment)

« S: (n) petitioner, suppliant, supplicant, requester (one praying
humbly for something)

* S: (n) possible (an applicant who might be suitable)

* S:(n) probable (an applicant likely to be chosen)

e S: (n) submitter (someone who submits something (as an
application for a job or a manuscript for publication etc.) for the
judgment of others)

o direct hypernym | inherited hypernym | sister term
o derivationally related form




Text Processing Pipeline

Tokenization

Segment text into terms.
Remove stop words? 3, an, the, of, to be

Entities? Washington State, Seattle, U.S.A



Text Processing Pipeline

Tokenization

Segment text into terms.
Remove stop words? 3, an, the, of, to be

Entities? Washington State, Seattle, U.S.A

Stemming

Group together different forms of a word.
Porter stemmmer? visualization(s), visualize(s), visually = visual
Lemmatization? goes, went, gone = go



Text Processing Pipeline

Tokenization

Segment text into terms.
Remove stop words? 3, an, the, of, to be

Entities? Washington State, Seattle, U.S.A

Stemming

Group together different forms of a word.
Porter stemmmer? visualization(s), visualize(s), visually = visual
Lemmatization? goes, went, gone = go

Ordered list of terms



Bag of Words Model

lgnore ordering relationships within the text

A document = vector of term weights

Each dimension corresponds to a term (10,000+)

Each value represents the relevance, e.g., term counts

Aggregate into a document-term matrix

Document vector space model



Document-Term Matrix

Each document is a vector of term weights

Simplest weighting is to just count occurrences

Antony and Cleopatra  Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0
Brutus 157
Caesar 227

Calpurnia 10

mercy

0
1
0
Cleopatra 0 0
5
1

worser
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http://number27.org/wordcount

Google Ngram Viewer
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https://books.google.com/ngrams/graph?content=it,he,they,she&year_start=1800&year_end=2019&corpus=26&smoothing=3&direct_url=t1;,it;,c0;.t1;,he;,c0;.t1;,they;,c0;.t1;,she;,c0#t1;,it;,c0;.t1;,he;,c0;.t1;,they;,c0;.t1;,she;,c0

Given a text, what are the
best descriptive words?
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Lexical Feature Selection vionre et al 09

Partisan Words, 106th Congress, Abortion
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Lexical Feature Selection vionre et al 09

Partisan Words, 106th Congress, Abortion

Top 20 words labeled (Weighted Log-Ocds-Ratio, Informative DirichietPrior)
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Limitations of Freq. Statistics

Typically focus on unigrams (single terms)

Often favors frequent (TF) or rare (IDF) terms

Not clear that these provide best description

A "bag of words"” ignores information
Grammar / part-of-speech
Position within document

Recognizable entities



Bag of Words Model:
Word or Tag Clouds



Visualizations : Wordle of Sarah Palin RNC 9/3/2008 Speech

Creator: Anonymous
Tags:
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Tag Clouds

Strengths

Can help with overview and initial query formation.

Weaknesses

Sub-optimal visual encoding (size vs. position)
Inaccurate size encoding (long words are bigger)
May not facilitate comparison (unstable layout)
Term frequency may not be meaningful

Does not show the structure of the text



Size: Perceptual Biases (#iecnderetal 1)
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Size: Perceptual Biases (#iecnderetal 1)

Label E/P Effectof  Primary Effect of bias Additional Accuracy at min A font size Notes
A fontsize bias factor  factor agreement factor agree neutral disagree
len] P word length - 0.860 0.879 0.753  Word length biases percep-
tion of font size
len2 P word length' base font size’ 0.861 0.816 0.734 We see a greater bias at larger
base font (30 px versus 20 px)
len3 P . word length’ base font size' 0.825 0.838 0.642 Tested wider variety of base-
line font sizes
lend E word length 0.992 0.942 0.867 Bias still present with English
words and denser word
clouds
heightl P word height - 0.974 0.909 0.684 Character heights bias per-
ception of font size
height2 P N word height' - 0.929 0.810 0.529 Proportional difference in
font size seems to matter
more than absolute difference
height3 P . word height' - 0937  0.795 0.525 Bias still present when word
clouds use sans serif font
heightd P word height' base font size! 0.931 0.790 0.479 We see a greater bias at larger
base font (30 px versus 20 px)
heights P word height' base font size’ 0.963 0.854 0.489  Accuracy hits ceiling between
20-25% size difference
widthl E word width 0.975 - 0.909 Bias present when length is
held constant and width
varies
width2 E x word length 0.982 0982 No bias when width is held
constant and length varies
box] E word width - 0.914 0.932 0908 No bias with corrected-width
rectangular bounding boxes
bigl P word length number of near misses (0.888 0.826 0.658 Tested using “pick the big-
gest word” task
big2 P word length number of near misses 0.811 0562 Tested wider variety of

length differences



Size: Perceptual Biases (#iecnderetal 1)




Yelp Review Spotlight Yatani et al.

baked bar pest chef
fish food fresh
NOUF iine love Mango
people..really restaurant [OL
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“long wait” or “no wait”? what type of sushi roll?




Yelp Review Spotlight

[Yatani etal. '11]

best sf

°)

aked sea bass

best sushi
fresh fish

sushi chef

slow service

baked mussel

long time

|onb wait

long line hawaiian roll

baked mango

small place

sure in striped bass
other person

more hour

sushi restaurant

delicious everything

sushi bar

only thing

good food

reasonable price

Mentioned 63 times

possess sage of the halos wisdom , and know in advance
and the waits will be long and arduous .

yes , its a long wait , learn the master of zen If you want to eat here .

only accepts cash




Descriptive Phrases

Understand the limitations of your language model.

Bag of words: (1) easy to compute, (2) single words, (3) loss of order

Select appropriate model and visualization
Generate longer, more meaningful phrases
Adjective-noun word pairs for reviews

Show keyphrases within source text
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Context and Structure



Concordance
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Context & Structure [Wattenberg et al. '08]

if love be rough with yvou |, be rough with love |
if love be blind |, love cannaot hit the mark .
If love be blind | it best agrees with night .
rough with you , be rough with lave .
if love be love cannot hit the mark
blind ,

it best agrees with night .




WOrd Tree [Wattenberg et al. '08]
Recurrent themes in speech structure

Visualization of all occurrences of "l have a dream"
in Martin Luther King's historic speech:

this nation will rise up and live out the true meaning of its - "We hold these truths to be self-evident,
on the red hills of G the sons of forn es and the sons of forme ve owners will be able to sit down together at
even the state of Mississippi, a state sweltering with the heat of injustice, sweltering with the heat of oppression, will be transformed into

down in Alabama, with its vicious racists, with its governor having his lips dripping with the words of interposition and nullification - one day

| haveadream

every valley shall be exalted, and every hill and mountain shall be made low, the rough places will be made plain, and the
my four little children will one day live in a nation where they will not be judged by the color of their skin but by the

down in Alabama, with its vicious racists, with its governor having his lips dripping with the words of interposition and nullification - one day
today . i have a dream that one day

every valley shall he exalted, and every hill and mountain shall be made low, the rough places will be made plain, and the



Login

many eyeS e : || visualizations [ search ]

Visualizations : Word tree / Alberto Gonzales

Creator: Martin Wattenberg
explore Tags:
visualizations

Sg::rfleetris Search |i don't l | Back l ‘ Forward ® stat O End |0ccurrence Order |CIicksWilI Zoom

topic hubs

118

participate hits
create visualization
upload data set
create topic hub
register

learn more
quick start
visualization types
data format & style
abhout Many Eyes
FAQ
hlog I

contact Us
contact
report a bug

legal
terms of use

Popular Dataset Tags

2007 2008 bible blog
books CENSUS crime
education eharmony
election energy food [g >
health inauguration

internet ireland literature
lyrics media music

network obama I [ share e o 200 .
peOp|e politics ~==.m20s Blthis T this ¥ topic hub this

population

president prices religion This visualization has 4
R e ocumenilv showing positive  and 0 negative

A | This data set

222 Data file: Word in testimony from Gonzales, 4/19/2007  Data source: CQ Transcript Wire via the Washington Post | ¥ has not yet been rated

Comments {(4)



Glimpses of Structure...

Concordances show local, repeated structure

But what about other types of patterns?

Lexical: <A> at <B>

Syntactic: <Noun> <Verb> <Object>



Phrase NetS [lvan Ham et al. '09]

Look for specific linking patterns in the text:
"Aand B","Aat B", "A of B", etc.

Could be output of regexp or parser.

Visualize patterns in a node-link view:
Occurrences = Node size
Pattern position = Edge direction
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18th & 19th Century Novels
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New Testament
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Document Content

Understand Your Analysis Task

Visually: Word position, browsing, brush & link
Semantically: Word sequence, hierarchy, clustering
Both: Spatial layout reflects semantic relationships

The Role of Interaction

Language model supports visual analysis cycles
Allow modifications to the model: custom patterns
for expressing contextual or domain knowledge



Document Collections



Named Entity Recognition

Label named entities in text:

John Smith -> PERSON

Soviet Union -> COUNTRY

353 Serra St -> ADDRESS
(555)721-4312 -> PHONE NUMBER

Entity relations: how do the entities relate?

Simple approach: do the entities co-occur in a
small window of text?



Entity Relationships

% List View
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Theme River [Havre et al. '00]

ationalization of property begins
Cuba and Soviet relations resume isenhower breaks relations
[ Castro confiscates Anericw: refineries ray of Pigs

.

yankea(63)

Feapons (62)

geform(43) soviet(49)

»il(44)

dmpobiaTists (29) Fooperatives(16)

Fane(7)



Similarity & Clustering

Compute vector distance among docs
Similarity measure can be used to cluster

Topic modeling

Assume documents are a mixture of topics

Topics are (roughly) a set of co-occurring terms
Latent Semantic Analysis (LSA): reduce term matrix
Latent Dirichlet Allocation (LDA): statistical model
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Effective statistical models for syntactic and semantic disambiguation

Student: Kristina Nikolova Toutanova
Advisor: Christopher D. Manning

Computer Science (2005)
Keywords: Syntactic, Semantic, Tree kernels, Parsing
Abstract:

This thesis focuses on building effective statistical models for
disambiguation of sophisticated syntactic and semantic natural language
(NL) structures. We advance the state of the art in several domains by
(i) choosing representations that encode domain knowledge more
effectively and (ii) developing machine learning algorithms that deal with
the specific properties of NL disambiguation tasks--sparsity of training
data and large, structured spaces of hidden labels. For the task of
syntactic disambiguation, we propose a novel representation of parse
trees that connects the words of the sentence with the hidden syntactic
structure in a direct way. Experimental evaluation on parse selection for
a Head Driven Phrase Structure Grammar shows the new representation
achieves superior performance compared to previous models. For the
task of disambiguating the semantic role structure of verbs, we build a
more accurate model, which captures the knowledge that the semantic
frame of a verb is a joint structure with strong dependencies between
arguments. We achieve this using a Conditional Random Field without
Markov independence assumptions on the sequence of semantic role
labels. To address the sparsity problem in machine learning for NL, we
develop a method for incorporating many additional sources of
information, using Markov chains in the space of words. The Markov
chain framework makes it possible to combine multiple knowledge
sources, to learn how much to trust each of them, and to chain
inferences together. It achieves large gains in the task of
disambiguating prepositional phrase attachments.

Stanford Dissertation Browser
Jason Chuang, Dan Ramage, Christopher Manning, Jeffrey Heer
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Effective statistical models for syntactic and semantic disambiguation

Student: Kristina Nikolova Toutanova
Advisor: Christopher D. Manning

Computer Science (2005)
Keywords: Syntactic, Semantic, Tree kernels, Parsing
Abstract:

This thesis focuses on building effective statistical models for
disambiguation of sophisticated syntactic and semantic natural language
(NL) structures. We advance the state of the art in several domains by
(i) choosing representations that encode domain knowledge more
effectively and (ii) developing machine learning algorithms that deal with
the specific properties of NL disambiguation tasks--sparsity of training
data and large, structured spaces of hidden labels. For the task of
syntactic disambiguation, we propose a novel representation of parse
trees that connects the words of the sentence with the hidden syntactic
structure in a direct way. Experimental evaluation on parse selection for
a Head Driven Phrase Structure Grammar shows the new representation
achieves superior performance compared to previous models. For the
task of disambiguating the semantic role structure of verbs, we build a
more accurate model, which captures the knowledge that the semantic
frame of a verb is a joint structure with strong dependencies between
arguments. We achieve this using a Conditional Random Field without
Markov independence assumptions on the sequence of semantic role
labels. To address the sparsity problem in machine learning for NL, we
develop a method for incorporating many additional sources of
information, using Markov chains in the space of words. The Markov
chain framework makes it possible to combine multiple knowledge
sources, to learn how much to trust each of them, and to chain
inferences together. It achieves large gains in the task of
disambiguating prepositional phrase attachments.
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Latent Space Cartography
Visual Analysis of Vector Space Embeddings

Yang Liu, Eunice Jun, Qisheng Li (CSE 512, Spring '18)
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Summary

High Dimensionality
Where possible use text to represent text...
... which terms are the most descriptive?

Context & Semantics
Provide relevant context to aid understanding.
Show (or provide access to) the source text.

Modeling Abstraction
Understand abstraction of your language models.
Match analysis task with appropriate tools and models.

Currently: from bag-of-words to vector space embeddings



