CSE 412 - Intro to Data Visualization

Exploratory Data Analysis

Jane Hoffswell University of Washington

Analysis Example: Motion Pictures Data

Motion Pictures Data

Title
IMDB Rating
Rotten Tomatoes Rating
MPAA Rating
Release Date

String (N)
Number (Q)
Number (Q)
String (O)
Date (T)

Lesson: Exercise Skepticism

Check data quality and your assumptions.
Start with univariate summaries, then start to consider relationships among variables.
Avoid premature fixation!

Analysis Example: Antibiotic Effectiveness

Data Set: Antibiotic Effectiveness

Genus of Bacteria
Species of Bacteria
Antibiotic Applied
Gram-Staining?
Min. Inhibitory Concent. (g)

String (N)
String (N)
String (N) Pos / Neg (N)
Number (Q)

Collected prior to 1951.

What questions might we ask?

Table l: Burtin's data.	Antibiotic			
Bacteria	Penicillin	Streptomycin	Neomycin	Gram Staining
Aerobacter aerogenes	870	1	1.6	negative
Brucella abortus	1	2	0.02	negative
Brucella anthracis	0.001	0.01	0.007	positive
Diplococcus pneumoniae	0.005	11	10	positive
Escherichia coli	100	0.4	0.1	negative
Klebsiella pneumoniae	850	1.2	1	negative
Mycobacterium tuberculosis	800	5	2	negative
Proteus vulgaris	3	0.1	0.1	negative
Pseudomonas aeruginosa	850	2	0.4	negative
Salmonella (Eberthella) typhosa	1	0.4	0.008	negative
Salmonella schottnuelleri	10	0.8	0.09	negative
Staphylococcus albus	0.007	0.1	0.001	positive
Staphylococcus aureus	0.03	0.03	0.001	positive
Streptococcus fecalis	1	1	0.1	positive
Streptococcus hemolyticus	0.001	14	10	positive
Streptococcus vividans	0.005	10	40	positive

How do the drugs compare?

| Bacteria | Penicillin | Antibiotic
 Streptomycin | Neomycin | Gram
 stain |
| :--- | ---: | :--- | ---: | :--- | :--- |
| Aerobacter aerogenes | 870 | 1 | 1.6 | - |
| Brucella abortus | 1 | 2 | 0.02 | - |
| Bacillus anthracis | 0.001 | 0.01 | 0.007 | + |
| Diplococcus pneumoniae | 0.005 | 11 | 10 | + |
| Escherichia coli | 100 | 0.4 | 0.1 | - |
| Klebsiella pneumoniae | 850 | 1.2 | 1 | - |
| Mycobacterium tuberculosis | 800 | 5 | 2 | - |
| Proteus vulgaris | 3 | 0.1 | 0.1 | - |
| Pseudomonas aeruginosa | 850 | 2 | 0.4 | - |
| Salmonella (Eberthella) typhosa | 1 | 0.4 | 0.008 | - |
| Salmonella schottmuelleri | 10 | 0.8 | 0.09 | - |
| Staphylococcus albus | 0.007 | 0.1 | 0.001 | + |
| Staphylococcus aureus | 0.03 | 0.03 | 0.001 | + |
| Streptococcus fecalis | 1 | 1 | 0.1 | + |
| Streptococcus hemolyticus | 0.001 | 14 | 10 | + |
| Streptococcus viridans | 0.005 | 10 | 40 | + |

Original graphic by Will Burtin, 1951

How do the drugs compare?

Bacteria	Penicillin	Antibiotic Streptomycin	Neomycin	Gram stain
Aerobacter aerogenes	870	1	1.6	-
Brucella abortus	1	2	0.02	-
Bacillus anthracis	0.001	0.01	0.007	+
Diplococcus pneumoniae	0.005	11	10	+
Escherichia coli	100	0.4	0.1	-
Klebsiella pneumoniae	850	1.2	1	-
Mycobacterium tuberculosis	800	5	2	-
Proteus vulgaris	3	0.1	0.1	-
Pseudomonas aeruginosa	850	2	0.4	-
Salmonella (Eberthella) typhosa	1	0.4	0.008	-
Salmonella schottmuelleri	10	0.8	0.09	-
Staphylococcus albus	0.007	0.1	0.001	+
Staphylococcus aureus	0.03	0.03	0.001	+
Streptococcus fecalis	1	1	0.1	+
Streptococcus hemolyticus	0.001	14	10	+
Streptococcus viridans	0.005	10	40	+

Radius: 1 / log(MIC)

Bar Color: Antibiotic

Background Color: Gram Staining

How do the drugs compare?

Mike Bostock
Stanford CS448B, Winter 2009

How do the drugs compare?

X-axis: Antibiotic | $\log ($ MIC $)$

 Y-axis: Gram-Staining | Species Color: Most-Effective?

Do the bacteria group by antibiotic resistance?

Do the bacteria

 group by antibiotic resistance?

Do the bacteria

 group by antibiotic resistance?

Do the bacteria group by antibiotic resistance?

> Really a streptococcus! (realized ~20 yrs later)

Wainer \& Lysen American Scientist, 2009

Do the bacteria group by antibiotic resistance?

Not a streptococcus! (realized ~30 yrs later)

Really a streptococcus! (realized ~20 yrs later)

Wainer \& Lysen American Scientist, 2009

Do the bacteria group by resistance? Do different drugs correlate?

Do the bacteria group by resistance? Do different drugs correlate?

Lesson: Iterative Exploration

Exploratory Process

1 Construct graphics to address questions
2 Inspect "answer" and assess new questions 3 Repeat...

Transform data appropriately (e.g., invert, log)
Show data variation, not design variation [Tufte]

Administrivia

A2: Exploratory Data Analysis

Use visualization software to form \& answer questions

First steps:

Step 1: Pick domain \& data
Step 2: Pose questions
Step 3: Profile the data Iterate as needed

Create visualizations

Interact with data
Refine your questions

Author a report

Due by 11:59pm Monday, Apr 19

Final Project Theme

Data Visualization for Communicating Scientific Advancements or Social Phenomena

Goal: find data of social or scientific import, design visualizations to communicate it effectively to a general audience.
The specific data domain is open-ended. Possibilities include transportation, campaign finance, education, economics, chemical engineering, sociology, statistics, atmospheric science, molecular interactions, scientific research, and so on...

Use Assignment 2 and 3 to explore a data set of interest prior to committing to final project teams and topic!

Final Project

Produce interactive web-based visualizations
Initial prototype and design review
Final deliverables and video presentation
Submit and publish online (GitHub)
Projects from previous classes $(442,512)$ have been:

- Published as research papers
- Shared widely (some in the New York Times!)
- Released as successful open source projects

Final Project Teams

Work in groups of 3-5 people

Post your project ideas and interests on Ed, or respond to classmates about their projects

Mark thread as resolved when you are no longer looking for additional members
https://edstem.org/us/courses/4910/discussion/354324

Required Readings for Fri 4/9

Design and Redesign in Data Visualization. Martin Wattenberg and Fernanda Viégas. 2015.

Tableau / Polaris

Polaris [Stolte et al.]

Tableau

Tableau / Polaris Approach

Insight: can simultaneously specify both database queries and visualization

Choose data, then visualization, not vice versa Use smart defaults for visual encodings

Can also suggest encodings upon request

Specifying Table Configurations

Operands are the database fields
Each operand interpreted as a set $\{\ldots\}$
Quantitative and Ordinal fields treated differently

Three operators:
concatenation (+)
cross product (x)
nest (/)


```
O Tableau - Book
```



```
# Quantity
# Sales
\oplus Latitude (generated)
\oplus(Longitude (generated)
=# Number of Records
# Measure Values
```

```
Office Supplies
\(\square\) Furniture
```

O- Tableau - Book1

```


```

Ratio

Quantity

Sales

\oplus Latitude (generated)
\oplus([) Longitude (generated)
=\# Number of Records

Measure Values

Office Supplies
Furniture

```

\section*{© Data Source}
```

Sheet 1
直 甶 胡

ilif Columns	\pm Category	= XSUM(Sales)	HSUM(Profit)
\# Rows	Region	Segment	

Table Algebra

The operators ($+, x, /$) and operands (O, Q) provide an algebra for tabular visualization.

Algebraic statements are then mapped to:
Visualizations - trellis plot partitions, visual encodings
Queries - selection, projection, group-by aggregation
In Tableau, users make statements via drag-and-drop Note that this specifies operands NOT operators!
Operators are inferred by data type (O, Q)

Table Algebra: Operands

Ordinal fields: interpret domain as a set that partitions table into rows and columns.
Quarter $=\{(\mathrm{Qtr1}),(\mathrm{Otr} 2),(\mathrm{Otr} 3),(\mathrm{Qtr} 4)\}->$

Qtr1	Qtr2	Qtr3	Qtr4
95892	101760	105282	98225

Quantitative fields: treat domain as single element set and encode spatially as axes.
Profit $=\{($ Profit $[-410,650])\}$->

Concatenation (+) Operator

Ordered union of set interpretations

Quarter + Product Type
$=\{(\mathrm{Otr} 1),(\mathrm{Otr2)},(\mathrm{Otr} 3),(\mathrm{Otr} 4)\}+\{($ Coffee $),($ Espresso $)\}$
$=\{(\mathrm{Otr1}),(\mathrm{Otr} 2),(\mathrm{Otr3}),(\mathrm{Otr} 4),($ Coffee),(Espresso) $\}$

Qtr1	Qtr2	Qtr3	Qtr4	Coffee	Espresso
48	59	57	53	151	21

Profit + Sales $=\{($ Profit[-310,620]),(Sales[0,1000]) $\}$

Cross (x) Operator

Cross-product of set interpretations

Quarter x Product Type =
\{(Otr1 ,Coffee), (Qtr1, Tea), (Qtr2, Coffee), (Otr2, Tea), (Qtr3,
Coffee), (Qtr3, Tea), (Qtr4, Coffee), (Otr4, Tea)\}

Qtr1		Qtr2			Qtr3		Qtr4	
Coffee	Espresso	Coffee	Espresso	Coffee	Espresso	Coffee	Espresso	
131	19	160	20	178	12	134	33	

Product Type \times Profit $=$

Coffee					Espresso					
	¢ - -		-	\bullet	,	-•••• - -				
0	100	200	300	400		0	100	200	300	400
Profit					Profit					

Nest (/) Operator

Cross-product filtered by existing records

Quarter x Month ->
creates twelve entries for each quarter. i.e., (Otr1, December)

Quarter / Month ->
creates three entries per quarter based on tuples in database (not semantics)

Ordinal-Ordinal

$=$
$=$
mem
\%
$=$
m_{m}^{m}

Quantitative-Quantitative

Ordinal-Quantitative

Querying the Database

(1)
from the database,
er-defined criteria.

Select records from the database,
filtering by user-defined criteria.
(2)

Partition the records into layers and panes. The same record may appear in multiple partitions.
(3)

Group, sort, and aggregate the relations within each pane.

Render and compose layers.

Quiz Section: Tableau

Tomorrow, Thursday April 8th

Introduction and hands-on experience in Tableau Come prepared with Tableau installed
See announcement on Ed for instructions

Up Next: Jane's Office Hour (link on Canvas)

