行政问题

- 实验 1 于下周四 (1/26) 交
- 作业 2 今天发布，于 1/31 交
- 实验 0 成绩可在 Canvas 上查看
Unsigned Multiplication in C

Operands:

\[w \text{ bits} \]

\[u \]

\[\ast \]

\[v \]

True Product:

\[2w \text{ bits} \]

\[u \cdot v \]

Discard \(w \) bits:

\[w \text{ bits} \]

\[\text{UMult}_w(u, v) \]

- **Standard Multiplication Function**
 - Ignores high order \(w \) bits

- **Implements Modular Arithmetic**
 - \(\text{UMult}_w(u, v) = u \cdot v \mod 2^w \)
Multiplication with shift and add

- Operation $u << k$ gives $u \times 2^k$
 - Both signed and unsigned

Operands: w bits

True Product: $w + k$ bits

Discard k bits: w bits

- **Examples:**
 - $u << 3$ $\Rightarrow u \times 8$
 - $u << 5 - u << 3$ $\Rightarrow u \times 24$

- Most machines shift and add faster than multiply
 - Compiler generates this code automatically
Number Representation Revisited

- What can we represent in one word?
 - Signed and Unsigned Integers
 - Characters (ASCII)
 - Addresses

- How do we encode the following:
 - Real numbers (e.g. 3.14159)
 - Very large numbers (e.g. 6.02×10^{23})
 - Very small numbers (e.g. 6.626×10^{-34})
 - Special numbers (e.g. ∞, NaN)
Floating Point Topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won’t cover
 - It’s a 58-page standard...
Representation of Fractions

- “Binary Point,” like decimal point, signifies boundary between integer and fractional parts:

 Example 6-bit representation:

 \[xx \cdot yyyyy \]

 \[2^1 \quad 2^0 \quad 2^{-1} \quad 2^{-2} \quad 2^{-3} \quad 2^{-4} \]

- Example: \[10.1010_2 = 1 \times 2^1 + 1 \times 2^{-1} + 1 \times 2^{-3} = 2.625_{10} \]

- Binary point numbers that match the 6-bit format above range from 0 (00.0000_2) to 3.9375 (11.1111_2)
Scientific Notation (Decimal)

- **Normalized form**: exactly one digit (non-zero) to left of decimal point

- **Alternatives to representing 1/1,000,000,000**
 - Normalized: 1.0×10^{-9}
 - Not normalized: $0.1 \times 10^{-8}, 10.0 \times 10^{-10}$
Scientific Notation (Binary)

- Computer arithmetic that supports this called **floating point** due to the “floating” of the binary point
 - Declare such variable in C as `float` (or `double`)
Scientific Notation Translation

- Convert from scientific notation to binary point
 - Perform the multiplication by shifting the decimal until the exponent disappears
 - Example: $1.011_2 \times 2^4 = 10110_2 = 22_{10}$
 - Example: $1.011_2 \times 2^{-2} = 0.01011_2 = 0.34375_{10}$

- Convert from binary point to normalized scientific notation
 - Distribute out exponents until binary point is to the right of a single digit
 - Example: $1101.001_2 = 1.101001_2 \times 2^3$

- Practice: Convert 11.375_{10} to binary scientific notation

- Practice: Convert $1/5$ to binary
Floating Point Topics

- Fractional binary numbers
- **IEEE floating-point standard**
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won’t cover
 - It’s a 58-page standard...
IEEE Floating Point

- IEEE 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Main idea: make numerically sensitive programs portable
 - Specifies two things: representation and result of floating operations
 - Now supported by all major CPUs

- Driven by numerical concerns
 - Scientists/numerical analysts want them to be as real as possible
 - Engineers want them to be easy to implement and fast
 - In the end:
 • Scientists mostly won out
 • Nice standards for rounding, overflow, underflow, but...
 • Hard to make fast in hardware
 • Float operations can be an order of magnitude slower than integer ops
Floating Point Encoding

- Use normalized, base 2 scientific notation:
 - Value: $\pm 1 \times \text{Mantissa} \times 2^{\text{Exponent}}$
 - Bit Fields: $(-1)^S \times 1.M \times 2^{(E+bias)}$

- Representation Scheme:
 - Sign bit (0 is positive, 1 is negative)
 - Mantissa (a.k.a. significand) is the fractional part of the number in normalized form and encoded in bit vector M
 - Exponent weights the value by a (possibly negative) power of 2 and encoded in the bit vector E
The Exponent Field

- **Use biased notation**
 - Read exponent as unsigned, but with *bias of* $2^{w-1}-1 = 127$
 - Representable exponents roughly ½ positive and ½ negative
 - Exponent 0 ($\text{Exp} = 0$) is represented as $E = 0b\ 0111\ 1111$

- **Why biased?**
 - Makes floating point arithmetic easier
 - Makes somewhat compatible with two’s complement

- **Practice:** To encode in biased notation, add the bias then encode in unsigned:
 - $\text{Exp} = 1 \rightarrow E = 0b$
 - $\text{Exp} = 127 \rightarrow E = 0b$
 - $\text{Exp} = -63 \rightarrow E = 0b$
The Mantissa (Fraction) Field

(-1)^S x (1 . M) x 2^{(E+bias)}

- Note the implicit 1 in front of the M bit vector
 - Example: 0b 0011 1111 1100 0000 0000 0000 0000
 is read as 1.12 = 1.5_{10}, not 0.12 = 0.5_{10}
 - Gives us an extra bit of precision

- Mantissa “limits”
 - Low values near M = 0b0...0 are close to 2^{Exp}
 - High values near M = 0b1...1 are close to 2^{Exp+1}
Peer Instruction Question

What is the correct value encoded by the following floating point number?

0b 0 10000000 11000000000000000000000

A. + 0.75
B. + 1.5
C. + 2.75
D. + 3.5
E. We’re lost...
Precision and Accuracy

- **Precision** is a count of the number of bits in a computer word used to represent a value
 - Capacity for accuracy

- **Accuracy** is a measure of the difference between the *actual value of a number* and its computer representation

- *High precision permits high accuracy but doesn’t guarantee it. It is possible to have high precision but low accuracy.*

- **Example:** `float pi = 3.14;`
 - `pi` will be represented using all 24 bits of the mantissa (highly precise), but is only an approximation (not accurate)
Need Greater Precision?

- **Double Precision** (vs. Single Precision) in 64 bits

- C variable declared as `double`
- Exponent bias is now $2^{10} - 1 = 1023$
- **Advantages**: greater precision (larger mantissa), greater range (larger exponent)
- **Disadvantages**: more bits used, slower to manipulate
Representing Very Small Numbers

- But wait... what happened to zero?
 - Using standard encoding 0x00000000 =
 - *Special case*: E and M all zeros = 0
 - Two zeros! But at least 0x00000000 = 0 like integers

- New numbers closest to 0:
 - $a = 1.0...0 \times 2^{-126} = 2^{-126}$
 - $b = 1.0...01 \times 2^{-126} = 2^{-126} + 2^{-149}$
 - Normalization and implicit 1 are to blame
 - *Special case*: $E = 0$, $M \neq 0$ are denormalized numbers
Denorm Numbers

- Denormalized numbers
 - No leading 1
 - Uses implicit exponent of -126 even though $E = 0x00$

- Denormalized numbers close the gap between zero and the smallest normalized number
 - Smallest norm: $\pm 1.0\ldots0_{\text{two}} \times 2^{-126} = \pm 2^{-126}$
 - Smallest denorm: $\pm 0.0\ldots01_{\text{two}} \times 2^{-126} = \pm 2^{-149}$
 - There is still a gap between zero and the smallest denormalized number

This is extra (non-testable) material
Other Special Cases

- **E = 0xFF, M = 0**: $\pm \infty$
 - *e.g.* division by 0
 - Still work in comparisons!

- **E = 0xFF, M ≠ 0**: Not a Number (NaN)
 - *e.g.* square root of negative number, 0/0, $\infty-\infty$
 - NaN propagates through computations
 - Value of M can be useful in debugging

- **New largest value (besides ∞)?**
 - **E = 0xFF** has now been taken!
 - **E = 0xFE** has largest: $1.1...1_2 \times 2^{127} = 2^{128} - 2^{104}$
Floating Point Encoding Summary

<table>
<thead>
<tr>
<th>Exponent</th>
<th>Mantissa</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>0</td>
<td>± 0</td>
</tr>
<tr>
<td>0x00</td>
<td>non-zero</td>
<td>± denorm num</td>
</tr>
<tr>
<td>0x01 – 0xFE</td>
<td>anything</td>
<td>± norm num num</td>
</tr>
<tr>
<td>0xFF</td>
<td>0</td>
<td>± ∞</td>
</tr>
<tr>
<td>0xFF</td>
<td>non-zero</td>
<td>NaN</td>
</tr>
</tbody>
</table>
Distribution of Values

- What ranges are NOT representable?
 - Between largest norm and infinity: Overflow
 - Between zero and smallest denorm: Underflow
 - Between norm numbers?: Rounding

- Given a FP number, what’s the bit pattern of the next largest representable number?
 - What is this “step” when Exp = 0?
 - What is this “step” when Exp = 100?

- Distribution of values is denser toward zero
Floating Point Topics

- Fractional binary numbers
- IEEE floating-point standard
- **Floating-point operations** and rounding
- Floating-point in C

There are many more details that we won’t cover
 - It’s a 58-page standard...
Floating Point Operations: Basic Idea

Value = \((-1)^S \times \text{Mantissa} \times 2^\text{Exponent}\)

- \(x +_f y = \text{Round}(x + y)\)
- \(x \times_f y = \text{Round}(x \times y)\)

Basic idea for floating point operations:

- First, compute the exact result
- Then round the result to make it fit into desired precision:
 - Possibly over/underflow if exponent outside of range
 - Possibly drop least-significant bits of mantissa to fit into M bit vector
Floating Point Addition

- \((-1)^{S_1}\times\text{Man}_{1}\times2^{\exp_1} + (-1)^{S_2}\times\text{Man}_{2}\times2^{\exp_2}\)
 - Assume \(E_1 > E_2\)

- Exact Result: \((-1)^{S}\times\text{Man}\times2^{\exp}\)
 - Sign \(S\), mantissa \(\text{Man}\):
 - Result of signed align & add
 - Exponent \(E\): \(E_1\)

- Adjustments:
 - If \(\text{Man} \geq 2\), shift \(\text{Man}\) right, increment \(E\)
 - If \(\text{Man} < 1\), shift \(\text{Man}\) left \(k\) positions, decrement \(E\) by \(k\)
 - Over/underflow if \(E\) out of range
 - Round \(\text{Man}\) to fit mantissa precision

Line up the binary points!

\[
1.010*2^2 \quad + \quad 1.000*2^{-1} \quad \rightarrow \quad ??? \quad + \quad 0.0001*2^2 \quad = \quad 1.0101*2^2
\]
Floating Point Multiplication

\[(-1)^{S_1} \times M_1 \times 2^{E_1} \times (-1)^{S_2} \times M_2 \times 2^{E_2} \]

- **Exact Result:** \((-1)^S \times M \times 2^E \)
 - **Sign** \(S \): \(s_1 \land s_2 \)
 - **Mantissa** \(Man \): \(M_1 \times M_2 \)
 - **Exponent** \(E \): \(E_1 + E_2 \)

- **Adjustments:**
 - If \(Man \geq 2 \), shift \(Man \) right, increment \(E \)
 - Over/underflow if \(E \) out of range
 - Round \(Man \) to fit mantissa precision
Mathematical Properties of FP Operations

- Exponent overflow yields $+\infty$ or $-\infty$
- Floats with value $+\infty$, $-\infty$, and NaN can be used in operations
 - Result usually still $+\infty$, $-\infty$, or NaN; but not always intuitive
- Floating point operations do not work like real math, due to rounding
 - Not associative: $(3.14+1e100)−1e100 ≠ 3.14+(1e100−1e100)$

 \[
 \begin{array}{c}
 3.14 \\
 0 \\
 3.14
 \end{array}
 \]

 - Not distributive: $100\times(0.1+0.2) ≠ 100\times0.1+100\times0.2$

 \[
 \begin{array}{c}
 30.000000000000003553 \\
 30
 \end{array}
 \]

 - Not cumulative
 - Repeatedly adding a very small number to a large one may do nothing
Summary

- Floating point approximates real numbers:
 - Handles large numbers, small numbers, special numbers
 - Exponent in biased notation (bias = \(2^{w-1} - 1\))
 - Outside of representable exponents is overflow and underflow
 - Mantissa approximates fractional portion of binary point
 - Implicit leading 1 (normalized) except in special cases
 - Exceeding length causes rounding

<table>
<thead>
<tr>
<th>Exponent</th>
<th>Mantissa</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>0</td>
<td>± 0</td>
</tr>
<tr>
<td>0x00</td>
<td>non-zero</td>
<td>± denorm num</td>
</tr>
<tr>
<td>0x01 – 0xFE</td>
<td>anything</td>
<td>± norm num</td>
</tr>
<tr>
<td>0xFF</td>
<td>0</td>
<td>± ∞</td>
</tr>
<tr>
<td>0xFF</td>
<td>non-zero</td>
<td>NaN</td>
</tr>
</tbody>
</table>
BONUS SLIDES

An example that applies the IEEE Floating Point concepts to a smaller (8-bit) representation scheme. These slides expand on material covered today, so while you don’t need to read these, the information is “fair game.”
Tiny Floating Point Example

- **8-bit Floating Point Representation**
 - The sign bit is in the most significant bit (MSB)
 - The next four bits are the exponent, with a bias of $2^{4-1}-1 = 7$
 - The last three bits are the mantissa

- **Same general form as IEEE Format**
 - Normalized binary scientific point notation
 - Similar special cases for 0, denormalized numbers, NaN, ∞
Dynamic Range (Positive Only)

<table>
<thead>
<tr>
<th>S</th>
<th>E</th>
<th>M</th>
<th>Exp</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0000</td>
<td>−6</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0001</td>
<td>−6</td>
<td>1/8 * 1/64 = 1/512</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0010</td>
<td>−6</td>
<td>2/8 * 1/64 = 2/512</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0000</td>
<td>−6</td>
<td>6/8 * 1/64 = 6/512</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0000</td>
<td>−6</td>
<td>7/8 * 1/64 = 7/512</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0001</td>
<td>−6</td>
<td>9/8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0011</td>
<td>−1</td>
<td>14/8 * 1/2 = 14/16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0011</td>
<td>−1</td>
<td>15/8 * 1/2 = 15/16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0011</td>
<td>0</td>
<td>8/8 * 1 = 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0011</td>
<td>0</td>
<td>9/8 * 1 = 9/8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0011</td>
<td>0</td>
<td>10/8 * 1 = 10/8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0111</td>
<td>7</td>
<td>14/8 * 128 = 224</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0111</td>
<td>7</td>
<td>15/8 * 128 = 240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1111</td>
<td>n/a</td>
<td>inf</td>
</tr>
</tbody>
</table>

- **Denormalized numbers**
- **Normalized numbers**
- **Closest to zero**
- **Largest denormal**
- **Smallest norm**
- **Closest to 1 below**
- **Closest to 1 above**
- **Largest norm**
Special Properties of Encoding

- Floating point zero (0^+) exactly the same bits as integer zero
 - All bits = 0

- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider $0^- = 0^+ = 0$
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity