University of Washington

Computer Systems

CSE 410 Autumn 2013
10 — Memory Organization and Caches

06 April 2012 Memory Organization 1

University of Washington

Memory & data
Road ma p Integers & floats
C: Java: Machine code & C
: : x86 assembly

car *c = malloc(sizeof(car)); Car ¢ = new Car(); Procedures & stacks
c->miles = 100; c.setMiles (100) ; Arrays & structs
c->gals = 17; 5o EOEB (5T § Memory & caches
float mpg = get mpg(c) ; float mpg = Y
free (c) ; c.getMPG () ; Processes

- — Virtual memory
Assembly get mpg: Memory allocation
language: pushg %rbp Java vs. C

movq %rsp, S%rbp
popq $rbp

ret
v

Machine 0111010000011000
de- 100011010000010000000010
coae. 1000100111000010
110000011111101000011111
Computer

system:

Caches

University of Washington

Memory and Caches

Cache basics

Principle of locality

|

|

m Memory hierarchies
m Cache organization
|

Program optimizations that consider caches

University of Washington

Making memory accesses fast!

m What we want: Memories that are
"Big
" fast
" Cheap

m Hardware: Pick any two

m So we’ll be clever...

02 May 2012 Memory Organization 4

University of Washington

How does execution time grow with SIZE?

int array[SIZE];
int A = 0;

for (int 1 = 0 ; i < 200000 ; ++ 1) {
0 ; j < SIZE ; ++ j) {
A += array([]]l:

for (int j

} TIME

Plot

SIZE

Actual Data

45

40

35

30

25

Time

20

15

10

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

SIZE

Caches

University of Washington

Problem: Processor-Memory Bottleneck

Processor performance

doubled about _
every 18 months Bus bandwidth
evolved much slower
Main
CPU | Reg
Memory

Core 2 Duo: Core 2 Duo:
Can process at least Bandwidth
256 Bytes/cycle 2 Bytes/cycle

Latency

100 cycles

Problem: lots of waiting on memory

Caches

University of Washington

Problem: Processor-Memory Bottleneck

Processor performance

doubled about _
every 18 months Bus bandwidth
evolved much slower
Main
CPU | Reg Cache
Memory

Core 2 Duo: Core 2 Duo:
Can process at least Bandwidth
256 Bytes/cycle 2 Bytes/cycle

Latency

100 cycles

Solution: caches

Caches

Cache

m English definition: a hidden storage space for provisions,
weapons, and/or treasures

m CSE definition: computer memory with short access time used
for the storage of frequently or recently used instructions or
data (i-cache and d-cache)

more generally,

used to optimize data transfers between system elements
with different characteristics (network interface cache, 1/0
cache, etc.)

University of Washington

General Cache Mechanics

Smaller, faster, more expensive
memory caches a subset of
the blocks

Cache 8 9 14 3

Data is copied in block-sized
transfer units

Larger, slower, cheaper memory
Memory 0 1 2 3 viewed as partitioned into “blocks”
4 5 6 7
8 9 10 11
12 13 14 15
0 0000000000000 O0CO0CO

University of Washington

General Cache Concepts: Hit

Request: 14 Data in block b is needed
h 2 5 12 3 Block b is in cache:
Cache Hit!
Memory 0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
000000000 0O0OCOCGOGOOOSOOS

University of Washington

General Cache Concepts: Miss

Request: 12 Data in block b is needed
h . 5 12 3 Block b is not in cache:
Cache Miss!
Block b is fetched from
12 Request: 12
memory
Block b is stored in cache
Memory 0 1 2 3 * Placement policy:
4 5 6 7 determines where b goes
* Replacement policy:
1 11
8 2 0 determines which block
12 13 14 15 gets evicted (victim)

Caches

University of Washington

Not to forget...

CPU

A little of super
fast memory (cache$)

Lots of
slower Mem

Caches

University of Washington

Memory and Caches

Cache basics
Principle of locality

|

|

m Memory hierarchies
m Cache organization
|

Program optimizations that consider caches

Caches and Locality

University of Washington

Why Caches Work

m Locality: Programs tend to use data and instructions with
addresses near or equal to those they have used recently

m Temporal locality: (17

= Recently referenced items are likely block
to be referenced again in the near future

m Spatial locality:

" |tems with nearby addresses tend C I?
to be referenced close together in time

block

®= How do caches take advantage of this?

Caches and Locality

University of Washington

Example: Locality?

sum = 0;

for (1 = 0; 1 < n; i++)
sum += a[i];

return sum;

m Data:
= Temporal: sumreferenced in each iteration
= Spatial: array a[] accessed in stride-1 pattern

m Instructions:
" Temporal: cycle through loop repeatedly

= Spatial: reference instructions in sequence

m Being able to assess the locality of code is a crucial skill
for a programmer

Caches and Locality

University of Washington

Another Locality Example

int sum array 3d(int a[M] [N] [N])
{

int i, j, k, sum = 0;

for (1 = 0; 1 < N; i++)
for (j = 0; j < N; j++)
for (k = 0; k < M; k++)
sum += a[k][1][]];
return sum;

}

m What is wrong with this code?
m How can it be fixed?

Caches and Locality

University of Washington

Memory and Caches

Cache basics
Principle of locality

|

|

m Memory hierarchies
m Cache organization
|

Program optimizations that consider caches

Caches - Memory Hierarchy

University of Washington

Cost of Cache Misses

m Huge difference between a hit and a miss
= Could be 100x, if just L1 and main memory

m Would you believe 99% hits is twice as good as 97%?

= Consider:
Cache hit time of 1 cycle
Miss penalty of 100 cycles

= Average access time:

= 97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
= 99% hits: 1 cycle +0.01 * 100 cycles = 2 cycles

m This is why “miss rate” is used instead of “hit rate”

Caches - Memory Hierarchy

University of Washington

Cache Performance Metrics

m Miss Rate

" Fraction of memory references not found in cache (misses / accesses)
=1 - hit rate
= Typical numbers (in percentages):
= 3% -10% for L1

m Hit Time
= Time to deliver a line in the cache to the processor
= |Includes time to determine whether the line is in the cache
= Typical hit times: 1 - 2 clock cycles for L1

m Miss Penalty
= Additional time required because of a miss
= Typically 50 - 200 cycles

Caches - Memory Hierarchy

University of Washington

Memory Hierarchies

m Some fundamental and enduring properties of hardware and
software systems:

= Faster storage technologies almost always cost more per byte and have
lower capacity

" The gaps between memory technology speeds are widening
= True for: registers € cache, cache <> DRAM, DRAM & disk, etc.
= Well-written programs tend to exhibit good locality

m These properties complement each other beautifully

m They suggest an approach for organizing memory and storage
systems known as a memory hierarchy

Caches - Memory Hierarchy

University of Washington

Memory Hierarchies

m Fundamental idea of a memory hierarchy:
= Each level k serves as a cache for the larger, slower, level k+1 below.

m Why do memory hierarchies work?

= Because of locality, programs tend to access the data at level k more
often than they access the data at level k+1.

" Thus, the storage at level k+1 can be slower, and thus larger and
cheaper per bit.

m Big Idea: The memory hierarchy creates a large pool of
storage that costs as much as the cheap storage near the
bottom, but that serves data to programs at the rate of the
fast storage near the top.

Caches - Memory Hierarchy

University of Washington

An Example Memory Hierarchy

A

Smaller,
faster,
costlier
per byte

Larger,
slower,
cheaper
per byte

registers CPU registers hold words retrieved from L1 cache

on-chip L1

cache (SRAM) L1 cache holds cache lines retrieved from L2 cache
off-chip L2

cache (SRAM) L2 cache holds cache lines retrieved

main memory
(DRAM)

from main memory

Main memory holds disk blocks
retrieved from local disks

local secondary storage
(local disks)

Local disks hold files
retrieved from disks on
remote network servers

remote secondary storage
(distributed file systems, web servers)

Caches - Memory Hierarchy

University of Washington

Intel Core i7 Cache Hierarchy

Access: 30-40 cycles

L3 unified cache

(shared by all cores) Block size: 64 bytes for

all caches.

Processor package

. Core 0 Core 3 L1 i-cache and d-cache:
| : 32 KB, 8-way,

. Regs Regs i Access: 4 cycles

L1 L1 L1 L1 L2 unified cache:

| d-cache| |i-cache d-cache| |i-cache | | 256 KB, 8-way,

| "e e . Access: 11 cycles
8 MB, 16-way,

Main memory

Caches - Memory Hierarchy

University of Washington

Intel i7 Die

I
O

02 May 2012 Memory Organization 25

Memory Controller

University of Washington

Memory and Caches

Cache basics
Principle of locality

Cache organization

|
|
m Memory hierarchies
|
|

Program optimizations that consider caches

Cache Organization

University of Washington

Where should we put data in the cache?

Memory Cache

0000
0001
0010
0011
0100
0101 Index Data
0110 00
0111 01
1000 10
1001 11
1010
1011
1100
1101
1110
1111

m How can we compute this mapping?

Cache Organization

University of Washington

Where should we put data in the cache?

Memory Cache

0000
0001
0010
0011

0100
0101 Index Data

0110 00
0111 01
1000 10
1001 11

1010
1011
1100
1101

e Hmm.. The cache might get confused later!
Why? And how do we solve that?

Cache Organization

University of Washington

Use tags!

Memory Cache

0000
0001
0010
0011

0100
0101 Index Tag Data

0110 00 00
0111 01 [
1000 10 01
1001 11 01
1010
1011
1100
1101
1110
1111

Cache Organization

University of Washington

What’s a cache block? (or cache line)

Byte Block (line)
Address number

0

1

2

T h W o aoo0VONOGOUAWN=O

Cache Organization

University of Washington

A puzzle.

m What can you infer from this:
m Cache starts empty

m Access (addr, hit/miss) stream
m (10, miss), (11, hit), (12, miss)

Cache Organization

University of Washington

Problems with direct mapped caches?

m What happens if a Memory
program uses addresses Address
0000

2,6,2,6,2,.. 0001
0010

0011

0100

0101
0110 o

0111 o
1000 19

1001 1
1010

1011
1100

1101
1110

1111

Index

Cache Organization

University of Washington

Associativity

m What if we could store data in any place in the cache?
m But that might slow down caches... so we do something in

between.

1-way
8 sets,
1 block each

wn
\lo\m-thﬂO:‘_Dr

direct mapped

Set

0

2-way
4 sets,
2 blocks each

Cache Organization

4-way
2 sets,
4 blocks each

Set

8-way
1 set,
8 blocks

Set

fully associative

University of Washington

But now how do | know where data goes?

(m-k-n) bits k bits)
) n-bit Block
m-bit Address Tag Index | [*— oOffset

Our example used a 22-block cache with 2" bytes per
block. Where would 13 (1101) be stored?

? bits ? bits
?-bits Block
4-bit Address T Offset

Cache Organization

University of Washington

Example placement in set-associative caches

m Where would data from address 0x1833 be placed?
= Block size is 16 bytes.

m 0x1833in binary is 00...0110000 011 0011.

(m-k-n) bits k bits

n-bit Block

m-bit Address Tag Index | [*— Offset
k=? k=? k=?
1-way associativity 2-way associativity 4-way associativity
8 sets, 1 block each 4 sets, 2 blocks each 2 sets, 4 blocks each
Set Set Set
0
1 Y e | -
2 0 ...
3 1 ..
4 2 bl e,
3 I D
6 3l
7

Cache Organization

University of Washington

Example placement in set-associative caches

m Where would data from address 0x1833 be placed?
= Block size is 16 bytes.

m O0x1833in binary is 00...0110000 011 0011.

(m-k-4) bits k bits

_ 4-bit Block
m-bit Address Tag Index | [*— Offset
k=3 k=2 k=1
1-way associativity 2-way associativity 4-way associativity
8 sets, 1 block each 4 sets, 2 blocks each 2 sets, 4 blocks each

wn
+

Set Set

NOUThA WN =00
-_
o

Cache Organization

University of Washington

Block replacement

m Any empty block in the correct set may be used for storing data.
m If there are no empty blocks, which one should we replace?

m Replace something, of course, but what?
= Caches typically use something close to least-recently-used

1-way associativity 2-way associativity 4-way associativity
8 sets, 1 block each 4 sets, 2 blocks each 2 sets, 4 blocks each
Set Set Set

| l

1| | Y e I O —

2 N o

3

4 2 b

5 1

6 3

7

Cache Organization

University of Washington

Another puzzle.

m What can you infer from this:
m Cache starts empty

m Access (addr, hit/miss) stream
m (10, miss); (12, miss); (10, miss)

Cache Organization

University of Washington

Memory and Caches

Cache basics
Principle of locality

Cache organization (part 2)

|
|
m Memory hierarchies
|
|

Program optimizations that consider caches

Cache Organization

University of Washington

General Cache Organization (S, E, B)

E = 2¢ lines per set

4 % ~N set
s —
o000
line
o000
S=Zssets< coee
0 0000000 0000COCEOGFEOGOEOEOEOEOEOEOOOOOOSOO
o000
\
cache size:
v tag olil 2l -oeer o1 S x E x B data bytes
valid bit N~

B = 2 bytes of data per cache line (the data block)

Cache Organization

University of Washington

* Locate set
CaChe Read * Check if any line in set
has matching tag
E = 2¢ lines per set * Yes + line valid: hit
- A ~ * Locate data starting
r at offset
o000

Address of byte in memory:
t bits s bits | b bits

S=Zssets< e aubaed

eeee tag set block

index offset
OO0 000000000000 OCOCEOGEOGEOGEOGEOOO®OO®OSOO
o000
\.
data begins at this offset
v tag 0]1]2] ccc°- B-1
L — _
valid bit ~

B = 2 bytes of data per cache line (the data block)

Cache Organization

University of Washington

Example: Direct-Mapped Cache (E = 1)

Direct-mapped: One line per set
Assume: cache block size 8 bytes

4 Address of int:
v tag 0j1]2]3|4|5]|6]7 -
t bits 0..01 | 100
v ta ol1]12]|3]|a]l5]|6]7 -
& find set
S = 2% sets <
v tag 011121314)5]6]7

' tag 011|2)3]14]|5]6]7

Cache Organization

University of Washington

Example: Direct-Mapped Cache (E = 1)

Direct-mapped: One line per set
Assume: cache block size 8 bytes

Address of int:
t bits 0..01 | 100

valid? + match?: yes = hit

v tag 0j1]2]3|4]|5]|6]7

block offset

Cache Organization

University of Washington

Example: Direct-Mapped Cache (E = 1)

Direct-mapped: One line per set
Assume: cache block size 8 bytes

Address of int:
t bits 0..01 | 100

valid? + match?: yes = hit

v tag 011121314)5]6]7

block offset

int (4 Bytes) is here

No match: old line is evicted and replaced

Cache Organization

University of Washington

E-way Set-Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

v tag 0j1j1213|4|5|6}]7 v tag 011121314 |15|6}]7
vl | tag | lo]lz2]2]3]2]s]6]7 vl | tag | lo]2]2]3]|a]s]6]7 find set
v tag 011]12|3|4]|5]6]7 v tag 011]1213|4]5]6]7

v tag 01112134]5]6]7 v tag 01112134 |5|6]7

Cache Organization

University of Washington

E-way Set-Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes = hit

v| [tag | [o]1]2]3]4]5]6]7 vl | tag | |o|2]2]3]a]s5]6]7

block offset

Cache Organization

University of Washington

E-way Set-Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes = hit

v tag ol1]|2]|3]4]l5]6]|7 v tag ol1]|2]3]al5]6]|7

block offset
short int (2 Bytes) is here
No match:

* One line in set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...

Cache Organization

University of Washington

Types of Cache Misses

m Cold (compulsory) miss
= Qccurs on first access to a block

m Conflict miss

= Most hardware caches limit blocks to a small subset (sometimes just one)
of the available cache slots

= if one (e.g., block i must be placed in slot (i mod size)), direct-mapped

= if more than one, n-way set-associative (where n is a power of 2)

® Conflict misses occur when the cache is large enough, but multiple data
objects all map to the same slot

= e.g., referencing blocks 0, 8, 0, 8, ... would miss every time
m Capacity miss

= QOccurs when the set of active cache blocks (the working set)
is larger than the cache (just won’t fit)

Cache Organization

University of Washington

What about writes?

m Multiple copies of data exist:
= L1, L2, possibly L3, main memory

m What is the main problem with that?

Cache Organization

University of Washington

What about writes?

m Multiple copies of data exist:
= L1, L2, possibly L3, main memory

m What to do on a write-hit?

= Write-through (write immediately to memory)
= Write-back (defer write to memory until line is evicted)
= Need a dirty bit to indicate if line is different from memory or not

m What to do on a write-miss?
= Write-allocate (load into cache, update line in cache)
= Good if more writes to the location follow
= No-write-allocate (just write immediately to memory)
m Typical caches:

= Write-back + Write-allocate, usually
= Write-through + No-write-allocate, occasionally

Cache Organization

University of Washington

Intel Core i7 Cache Hierarchy

Access: 30-40 cycles

L3 unified cache

(shared by all cores) Block size: 64 bytes for

all caches.

Processor package

. Core 0 Core 3 L1 i-cache and d-cache:
| : 32 KB, 8-way,

. Regs Regs i Access: 4 cycles

L1 L1 L1 L1 L2 unified cache:

| d-cache| |i-cache d-cache| |i-cache | | 256 KB, 8-way,

| "e e . Access: 11 cycles
8 MB, 16-way,

Main memory

Cache Organization

University of Washington

Memory and Caches

Cache basics
Principle of locality

|

|

m Memory hierarchies
m Cache organization
|

Program optimizations that consider caches

Caches and Program Optimizations

University of Washington

Optimizations for the Memory Hierarchy

m Write code that has locality
= Spatial: access data contiguously
= Temporal: make sure access to the same data is not too far apart in time

m How to achieve?
= Proper choice of algorithm
= Loop transformations

Caches and Program Optimizations

University of Washington

Example: Matrix Multiplication

c = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; 1 < n; i++)
for (j = 0; j < n; j++)
for (k = 0; k < n; k++)
cl[i*n + j] += a[i*n + k]*b[k*n + j];

[T

I
*

Caches and Program Optimizations

University of Washington

Cache Miss Analysis

m Assume:

= Matrix elements are doubles
= Cache block = 64 bytes = 8 doubles
" Cache size C << n (much smaller than n)

m First iteration: r ~

" n/8+n=9n/8 misses
(omitting matrix c)

1
*

= Afterwards in cache: . ——
(schematic)

Il
*

8 wide

Caches and Program Optimizations

University of Washington

Cache Miss Analysis

m Assume:
= Matrix elements are doubles
= Cache block = 64 bytes = 8 doubles
" Cache size C << n (much smaller than n)

m Other iterations: r

n
A
= Again: .
n/8 + n =9n/8 misses

Il
*

(omitting matrix c)

8 wide

m Total misses:
" 9n/8 * n2=(9/8) * n3

Caches and Program Optimizations

University of Washington

Blocked Matrix Multiplication

c = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; 1 < n; i+=B)
for (j = 0; j < n; j+=B)
for (k = 0; k < n; k+=B)
/* B x B mini matrix multiplications */
for (i1l = i; il < i+B; il++)
for (j1 = j; jl < Jj+B; jl++)
for (k1 = k; k1l < k+B; kl++)
c[il*n + jl] += a[il*n + k1l]*b[kl*n + jl];

j1
Cc a b
— *
] i1 [

Block size Bx B

Caches and Program Optimizations

University of Washington

Cache Miss Analysis

m Assume:
= Cache block = 64 bytes = 8 doubles
= Cache size C << n (much smaller than n)
" Three blocks M fit into cache: 3B%>< C

. . . n/B blocks
m First (block) iteration: A

= B2/8 misses for each block M BEEEE B
" 2n/B * BY/8 = nB/4 _ —

(omitting matrix c) - *]

Block size Bx B

= Afterwards in cache N 1T

(schematic)

I
*

Caches and Program Optimizations

University of Washington

Cache Miss Analysis

m Assume:
= Cache block = 64 bytes = 8 doubles
= Cache size C << n (much smaller than n)
" Three blocks M fit into cache: 3B%>< C

B block
m Other (block) iterations: n/B blocks

_AL
' Y
®m Same as first iteration
O RN
Xk

= 2n/B * B2/8 =nB/4

m Total misses:
" nB/4 * (n/B)? =n3/(4B)

Block size Bx B

Caches and Program Optimizations

University of Washington

Summary

m No blocking: (9/8) * n3

m Blocking: 1/(4B) * n3

m IfB=8 differenceis4*8*9/8 =36x
m If B=16 differenceis4 *16 *9 /8 =72x

m Suggests largest possible block size B, but limit 3B < C!

m Reason for dramatic difference:

= Matrix multiplication has inherent temporal locality:
= Input data: 3n?, computation 2n3
= Every array element used O(n) times!

= But program has to be written properly

Caches and Program Optimizations

University of Washington

Cache-Friendly Code

m Programmer can optimize for cache performance
= How data structures are organized
" How data are accessed
= Nested loop structure
= Blocking is a general technique

m All systems favor “cache-friendly code”
= Getting absolute optimum performance is very platform specific
= Cache ssizes, line sizes, associativities, etc.
= Can get most of the advantage with generic code
= Keep working set reasonably small (temporal locality)
= Use small strides (spatial locality)
= Focus on inner loop code

Caches and Program Optimizations

University of Washington

Intel Core i7

The Memory Mountain 32KBLL [rcache

32 KB L1 d-cache
256 KB unified L2 cache
8M unified L3 cache

All caches on-chip

Read throughput (MB/s)

Stride (x8 bytes)

Working set size (bytes)

Caches and Program Optimizations

