CSE410 Autumn 2013 - Midterm Exam (Nov. 8, 2013)

Please read through the entire examination first! We designed this exam so that it can be completed in 50 minutes and we hope this estimate will prove to be reasonable.

There are 5 problems worth a total of 100 points. Write your answer neatly in the spaces provided. If you need more space (you shouldn't), you can write on the back of the sheet where the question is posed, but please make sure that you indicate clearly the problem to which the comments apply. Do NOT use any other paper to hand in your answers. If you have difficulty with part of a problem, move on to the next one. They are independent of each other.

The last pages of the test contain reference information. Feel free to separate those pages from the exam if it is convenient.

The exam is CLOSED book and CLOSED notes, no calculators, electronic devices, telepathy, or other communications. If you have questions, please raise your hand and someone will come to you.

Name: \qquad UW ID \# \qquad

| Problem | Max Score | Score |
| ---: | ---: | ---: | ---: |
| 1 | 16 | |
| 2 | 20 | |
| 3 | 14 | |
| 4 | 25 | |
| 5 | 25 | |
| TOTAL | $\mathbf{1 0 0}$ | |

1. Bits (16 points) The following two questions are similar to the questions in Lab 1 and the same ground rules apply:

- Assume all values are 32 -bit 2's complement integers.
- You may only use the operators !, $\sim, \&, \wedge, \mid,+, \ll$, and \gg and integer constants from 0 through $255(0 \mathrm{xFF})$. No other operators, control constructs, data structures, etc., and you may not call other functions.
- You may only use function arguments and any additional int local variables you declare. No global variables or other external data, no data structures like arrays.

For this exam problem, you may assume that no arithmetic overflow will occur if you add two ints.
(a) (6 points)
/* Return the 2^{\prime} s complement of x. (i.e., compute */
/* -x without using "-".) */
int negate (int x) \{
return \qquad ;
\}
(b) (10 points)
/* Return 1 if $x<y$, else return 0. */
int isLess (int x, int $y)$ \{
\qquad ;
\}
2. Number representation - Integers (20 points) Suppose we are working on a machine with 6-bit, 2 -s complement integers.
(a) What are the largest possible and smallest possible 2's complement numbers that can be expressed in 6 bits? i.e., $T M i n_{6}$ and $T M a x_{6}$?
(b) What is the decimal value of 110100_{2} if we interpret it as a 6 -bit 2 's complement signed number?
(c) What is the decimal value of 110100_{2} if we interpret it as a 6-bit unsigned number?
(d) Add 110100 and 010011 as 2's complement integers and convert the result to decimal.

$$
\begin{array}{r}
110100 \\
+\quad 010011 \\
\hline
\end{array}
$$

3. Number representation - Floating Point (14 points) A floating-point number has the form $(-1)^{\mathrm{S}} \times \mathrm{M} \times 2^{\mathrm{E}} . \mathrm{M}$ is the mantissa and 2^{E} is the exponent. Also recall that M ranges from 1.0 to (almost) 2.0.

If we convert the decimal number 9.625 to floating point, what is the binary value of M and the decimal value of E? You do not need to encode this in IEEE 754 representation with a biased exponent. Just give the values of M and E . (Hint: see the tables on the last few pages for powers of 2.)

What is the binary value of frac (the fractional bits of the mantissa that are actually stored in the IEEE floating point representation)?

4. $x 86$ and C code. (25 points)

We have a small x86 assembly language function that we need to disassemble.

```
mystery:
    pushl %ebp
    movl %esp,%ebp
    movl 16(%ebp),%eax
    cmpl 12(%ebp),%eax
    jge .L3
    testl %eax,%eax
    js .L3 # js means jump if sign bit set
    movl 8(%ebp),%edx
    movl (%edx,%eax,4), %eax
    leave
    ret
.L3:
    movl $0, %eax
    leave
    ret
```

Your job is to write an equivalent C function on the next page. The name of the function is mystery (the label at the start of the assembly language code).

The original C version of the function did not use any explicit pointer operators (no * or \&) so for full credit your solution should not use them either (although we'll award generous partial credit if you can only convert the program to C with a few pointer operations). Think about other possible data structures that might be involved.

You can detach this page if it is convenient - it does not need to be turned in.
Hint: Remember that the result of an integer-valued function is returned in register eax.
Hint: In the x 86 calling convention for a function mystery ($\mathrm{a}, \mathrm{b}, \mathrm{c}$), the leftmost argument a is stored in the stack at 8 ($\% \mathrm{ebp}$), b is at 12 ($\% \mathrm{ebp}$), c is at 16 ($\% \mathrm{ebp}$), and so on.

Hint: remember there is reference information on the last two pages of the exam.
It would be worth taking a minute to figure out where variables are stored in memory or registers.

4. x86 Code and C (cont.)

Write your C version of the assembly language function from the previous page here. Your answer should only need a few lines of code.

5. x86-64 Programming. (25 points)

Write an x86-64 assembly language function that is equivalent to the following C code

```
int loop(int x, int y) {
    while (x < y)
        x = x + y;
    return x;
}
```

Remember to use the 64-bit register and function call conventions (summarized on the last pages). The solution does not require too many assembly language instructions maybe a dozen or so at the most. Please include brief comments in your code to help us understand how you are using the registers and what assembly code corresponds to the different parts of the C code.

REFERENCES

Powers of 2:

$2^{0}=1$	
$2^{1}=2$	$2^{-1}=.5$
$2^{2}=4$	$2^{-2}=.25$
$2^{3}=8$	$2^{-3}=.125$
$2^{4}=16$	$2^{-4}=.0625$
$2^{5}=32$	$2^{-5}=.03125$
$2^{6}=64$	$2^{-6}=.015625$
$2^{7}=128$	$2^{-1}=.0078125$
$2^{8}=256$	$2^{-8}=.00390625$
$2^{9}=512$	$2^{-9}=.001953125$
$2^{10}=1024$	$2^{-10}=.0009765625$

Assembly Code Instructions:

$\begin{aligned} & \text { push } \\ & \text { pop } \end{aligned}$	push a value onto the stack and decrement the stack pointer pop a value from the stack and increment the stack pointer
call	jump to a procedure after first pushing a return address onto the stack
ret	pop return address from stack and jump there
mov	move a value between registers and memory
lea	compute effective address and store in a register
add	add $1^{\text {st }}$ operand to $2^{\text {nd }}$ with result stored in $2^{\text {nd }}$
sub	subtract $1^{\text {st }}$ operand from $2^{\text {nd }}$ with result stored in $2^{\text {nd }}$
and	bit-wise AND of two operands with result stored in $2^{\text {nd }}$
or	bit-wise OR of two operands with result stored in $2^{\text {nd }}$
sar	shift data in the $2^{\text {nd }}$ operand to the right (arithmetic shift) by the number of bits specified in the $1^{\text {st }}$ operand
jmp	jump to address
jne	conditional jump to address if zero flag is not set
js	conditional jump to address if sign flag is set (i.e., negative)
cmp	subtract $1^{\text {st }}$ operand from $2^{\text {nd }}$ operand and set flags
test	bit-wise AND $1^{\text {st }}$ operand from ${ }^{\text {nd }}$ operand and set flags

Register map for x86-64:

Note: all registers are caller-saved except those explicitly marked as callee-saved, namely, $r b x, r b p, r 12, r 13, r 14$, and $r 15 . r s p$ is a special register.

\%rax	Return value
\%rbx	Callee saved
\%rcx	Argument \#4
\% rdx	Argument \#3
\%rsi	Argument \#2
\%rdi	Argument \#1
\%rsp	Stack pointer
\%rbp	Callee saved

$\% r 8$	Argument \#5
$\% r 9$	Argument \#6
$r 10$	Caller saved
$\% r 11$	Caller Saved
$\% r 12$	Callee saved
$\% r 13$	Callee saved saved
$\% r 14$	Callee saved
$r 15$	

