
CSE410 Autumn 2013 – Midterm Exam (Nov. 8, 2013)  

  

 
 

Please read through the entire examination first!  We designed this exam so that it can be 

completed in 50 minutes and we hope this estimate will prove to be reasonable.   

 

There are 5 problems worth a total of 100 points.  Write your answer neatly in the spaces 

provided.  If you need more space (you shouldn't), you can write on the back of the sheet 

where the question is posed, but please make sure that you indicate clearly the problem to 

which the comments apply.  Do NOT use any other paper to hand in your answers. If you 

have difficulty with part of a problem, move on to the next one.  They are independent of 

each other. 

 

The last pages of the test contain reference information.  Feel free to separate those pages 

from the exam if it is convenient.  

 

The exam is CLOSED book and CLOSED notes, no calculators, electronic devices, 

telepathy, or other communications.  If you have questions, please raise your hand and 

someone will come to you.  

 

 
 

 

 

Name: ________________________________  UW ID # _____________    

 

 

  

 

  

  

Problem Max Score      Score 

1 16    

2 20    

3 14    

4 25  

5 25  

TOTAL 100     



 CSE 410 Midterm Exam, Autumn 2013 2  

1. Bits (16 points)  The following two questions are similar to the questions in Lab 1 and 

the same ground rules apply: 

 

 Assume all values are 32-bit 2’s complement integers. 

 You may only use the operators !, ~, &, ^, |, +, <<, and >> and integer constants 

from 0 through 255 (0xFF).  No other operators, control constructs, data 

structures, etc., and you may not call other functions. 

 You may only use function arguments and any additional int local variables you 

declare.  No global variables or other external data, no data structures like arrays. 

 

For this exam problem, you may assume that no arithmetic overflow will occur if you add 

two ints. 

 

(a) (6 points) 
 /* Return the 2’s complement of x. (i.e., compute */ 

 /* -x without using "-".)                         */ 

 int negate(int x) { 

 

 

 

 

 

 

 

  return _______________________; 

 

 } 

 

 

(b) (10 points) 
 /* Return 1 if x < y, else return 0. */ 

 int isLess(int x, int y) { 

 

 

 

 

 

 

 

 

 

 

 

  return _______________________; 

 

 } 

  



 CSE 410 Midterm Exam, Autumn 2013 3  

2. Number representation – Integers (20 points)  Suppose we are working on a 

machine with 6-bit, 2-s complement integers. 

 

(a) What are the largest possible and smallest possible 2’s complement numbers that can 

be expressed in 6 bits?  i.e., TMin6 and TMax6? 

 

 

 

 

 

 

 

 

 

 

 

(b) What is the decimal value of 1101002 if we interpret it as a 6-bit 2’s complement 

signed number? 

 

 

 

 

 

 

 

(c) What is the decimal value of 1101002 if we interpret it as a 6-bit unsigned number? 

 

 

 

 

 

 

 

(d)  Add 110100 and 010011 as 2’s complement integers and convert the result to 

decimal. 

 

    110100 

  + 010011 
 

 

 

  



 CSE 410 Midterm Exam, Autumn 2013 4  

3. Number representation – Floating Point (14 points)  A floating-point number has 

the form (-1)
S
 x M x 2

E
.  M is the mantissa and 2

E
 is the exponent.  Also recall that M 

ranges from 1.0 to (almost) 2.0. 

 

If we convert the decimal number 9.625 to floating point, what is the binary value of M 

and the decimal value of E?  You do not need to encode this in IEEE 754 representation 

with a biased exponent.  Just give the values of M and E.  (Hint: see the tables on the last 

few pages for powers of 2.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

What is the binary value of frac (the fractional bits of the mantissa that are actually stored 

in the IEEE floating point representation)? 

 

 

 

  



 CSE 410 Midterm Exam, Autumn 2013 5  

4. x86 and C code. (25 points) 

 

We have a small x86 assembly language function that we need to disassemble. 

 
mystery: 

 pushl %ebp 

 movl %esp,%ebp 

 movl 16(%ebp),%eax 

 cmpl 12(%ebp),%eax 

 jge .L3 

 testl %eax,%eax 

 js .L3            # js means jump if sign bit set 

 movl 8(%ebp),%edx 

 movl (%edx,%eax,4), %eax 

     leave 

 ret 

.L3: 

 movl $0, %eax 

     leave 

 ret 

 

 

Your job is to write an equivalent C function on the next page.  The name of the function 

is mystery (the label at the start of the assembly language code). 

 

The original C version of the function did not use any explicit pointer operators (no * or 

&) so for full credit your solution should not use them either (although we’ll award 

generous partial credit if you can only convert the program to C with a few pointer 

operations).  Think about other possible data structures that might be involved. 

 

You can detach this page if it is convenient – it does not need to be turned in. 

 

Hint: Remember that the result of an integer-valued function is returned in register eax. 

 

Hint: In the x86 calling convention for a function mystery(a,b,c), the leftmost 

argument a is stored in the stack at 8(%ebp),  b is at 12(%ebp),  c is at 16(%ebp), 

and so on. 

 

Hint: remember there is reference information on the last two pages of the exam. 

 

It would be worth taking a minute to figure out where variables are stored in memory or 

registers. 

 

  



 CSE 410 Midterm Exam, Autumn 2013 6  

4. x86 Code and C (cont.) 

 

Write your C version of the assembly language function from the previous page here.  

Your answer should only need a few lines of code. 

 

 



 CSE 410 Midterm Exam, Autumn 2013 7  

5.  x86-64 Programming.  (25 points) 

 

Write an x86-64 assembly language function that is equivalent to the following C code 

 
int loop(int x, int y) { 

  while (x < y)  

    x = x + y; 

  return x; 

} 

 

Remember to use the 64-bit register and function call conventions (summarized on the 

last pages).  The solution does not require too many assembly language instructions – 

maybe a dozen or so at the most.  Please include brief comments in your code to help us 

understand how you are using the registers and what assembly code corresponds to the 

different parts of the C code. 

 

 

 

 

 

 

 

 

 

 

 

  



 CSE 410 Midterm Exam, Autumn 2013 8  

 

REFERENCES 

 

 

 

Powers of 2: 

 

2
0
  = 1  

2
1
  = 2 2

-1
  = .5 

2
2
  = 4 2

-2
  = .25 

2
3
  = 8 2

-3
  = .125 

2
4
  = 16 2

-4
  = .0625 

2
5
  = 32 2

-5
  = .03125 

2
6
  = 64 2

-6
  = .015625 

2
7
  = 128 2

-7
  = .0078125 

2
8
  = 256 2

-8
  = .00390625 

2
9
  = 512 2

-9
  = .001953125 

2
10

 = 1024 2
-10

 = .0009765625 

 

 

 

Assembly Code Instructions: 

 

push  push a value onto the stack and decrement the stack pointer 

pop  pop a value from the stack and increment the stack pointer 

 

call  jump to a procedure after first pushing a return address onto the stack 

ret  pop return address from stack and jump there 

 

mov  move a value between registers and memory 

lea  compute effective address and store in a register 

 

add  add 1
st
 operand to 2

nd
 with result stored in 2

nd
 

sub  subtract 1
st
 operand from 2

nd
 with result stored in 2

nd
 

and  bit-wise AND of two operands with result stored in 2
nd

  

or  bit-wise OR of two operands with result stored in 2
nd

  

sar  shift data in the 2
nd

 operand to the right (arithmetic shift) by the number of 

bits specified in the 1
st
 operand 

 

jmp  jump to address 

jne  conditional jump to address if zero flag is not set 

js  conditional jump to address if sign flag is set (i.e., negative) 

cmp  subtract 1
st
 operand from 2

nd
 operand and set flags 

test  bit-wise AND 1
st
 operand from 2

nd
 operand and set flags 

 



 CSE 410 Midterm Exam, Autumn 2013 9  

Register map for x86-64: 

 

Note: all registers are caller-saved except those explicitly marked as callee-saved, 

namely, rbx , rbp , r12 , r13 , r14 , and r15 .  rsp  is a special register. 

 

 

 
 


