
 CSE 410 Midterm Sample Solution 11/8/13

 CSE 410 Midterm Exam, Autumn 2013 1

1. Bits (16 points) The following two questions are similar to the questions in Lab 1 and

the same ground rules apply:

 Assume all values are 32-bit 2’s complement integers.

 You may only use the operators !, ~, &, ^, |, +, <<, and >> and integer constants

from 0 through 255 (0xFF). No other operators, control constructs, data

structures, etc., and you may not call other functions.

 You may only use function arguments and any additional int local variables you

declare. No global variables or other external data, no data structures like arrays.

For this exam problem, you may assume that no arithmetic overflow will occur if you add

two ints.

(a) (6 points)
 /* Return the 2’s complement of x. (i.e., compute */

 /* -x without using "-".) */

 int negate(int x) {

 return ___~x + 1____;

 }

(b) (10 points)
 /* Return 1 if x < y, else return 0. */

 int isLess(int x, int y) {

 int diff = x + (~y+1); // x-y

 return ____(diff >> 31) & 0x1 ;

 }

 CSE 410 Midterm Sample Solution 11/8/13

 CSE 410 Midterm Exam, Autumn 2013 2

2. Number representation – Integers (20 points) Suppose we are working on a

machine with 6-bit, 2-s complement integers.

(a) What are the largest possible and smallest possible 2’s complement numbers that can

be expressed in 6 bits? i.e., TMin6 and TMax6?

 TMax6 = 31 (= 2
5
-1)

 TMin6 = -32 (= -2
5
)

(b) What is the decimal value of 1101002 if we interpret it as a 6-bit 2’s complement

signed number?

 -12

(c) What is the decimal value of 1101002 if we interpret it as a 6-bit unsigned number?

 52

(d) Add 110100 and 010011 as 2’s complement integers and convert the result to

decimal.

 110100

 + 010011

 000111 = 7

 CSE 410 Midterm Sample Solution 11/8/13

 CSE 410 Midterm Exam, Autumn 2013 3

3. Number representation – Floating Point (14 points) A floating-point number has

the form (-1)
S
 x M x 2

E
. M is the mantissa and 2

E
 is the exponent. Also recall that M

ranges from 1.0 to (almost) 2.0.

If we convert the decimal number 9.625 to floating point, what is the binary value of M

and the decimal value of E? You do not need to encode this in IEEE 754 representation

with a biased exponent. Just give the values of M and E. (Hint: see the tables on the last

few pages for powers of 2.)

Decimal 9.625 is 1001.101 in binary. So

 M = 1.001101

 E = 3

What is the binary value of frac (the fractional bits of the mantissa that are actually stored

in the IEEE floating point representation)?

 frac = 001101 (i.e., the bits of M excluding the leading 1)

 CSE 410 Midterm Sample Solution 11/8/13

 CSE 410 Midterm Exam, Autumn 2013 4

4. x86 and C code. (25 points)

We have a small x86 assembly language function that we need to disassemble.

mystery:

 pushl %ebp

 movl %esp,%ebp

 movl 16(%ebp),%eax

 cmpl 12(%ebp),%eax

 jge .L3

 testl %eax,%eax

 js .L3 # js means jump if sign bit set

 movl 8(%ebp),%edx

 movl (%edx,%eax,4), %eax

 leave

 ret

.L3:

 movl $0, %eax

 leave

 ret

Your job is to write an equivalent C function on the next page. The name of the function

is mystery (the label at the start of the assembly language code).

The original C version of the function did not use any explicit pointer operators (no * or

&) so for full credit your solution should not use them either (although we’ll award

generous partial credit if you can only convert the program to C with a few pointer

operations). Think about other possible data structures that might be involved.

You can detach this page if it is convenient – it does not need to be turned in.

Hint: Remember that the result of an integer-valued function is returned in register eax.

Hint: In the x86 calling convention for a function mystery(a,b,c), the leftmost

argument a is stored in the stack at 8(%ebp), b is at 12(%ebp), c is at 16(%ebp),

and so on.

Hint: remember there is reference information on the last two pages of the exam.

It would be worth taking a minute to figure out where variables are stored in memory or

registers.

 CSE 410 Midterm Sample Solution 11/8/13

 CSE 410 Midterm Exam, Autumn 2013 5

4. x86 Code and C (cont.)

Write your C version of the assembly language function from the previous page here.

Your answer should only need a few lines of code.

Here is the original C code that generated most of the assembly-language version.

(The setup code to push %ebp and set up the stack frame, and the exit code were

added by hand. They were omitted by the compiler since they weren’t really needed

for this simple function.)

int mystery(int a[], int n, int k) {

 if (k >= 0 && k < n)

 return a[k];

 else

 return 0;

}

 CSE 410 Midterm Sample Solution 11/8/13

 CSE 410 Midterm Exam, Autumn 2013 6

5. x86-64 Programming. (25 points)

Write an x86-64 assembly language function that is equivalent to the following C code

int loop(int x, int y) {

 while (x < y)

 x = x + y;

 return x;

}

Remember to use the 64-bit register and function call conventions (summarized on the

last pages). The solution does not require too many assembly language instructions –

maybe a dozen or so at the most. Please include brief comments in your code to help us

understand how you are using the registers and what assembly code corresponds to the

different parts of the C code.

Here is the version generated by gcc using gcc –S –O, with some editing to

remove debugging information and to add comments in the margin.

x in %rdi (edi), y in %rsi (esi)

loop:

 movl %edi, %eax # copy x to eax

 cmpl %esi, %edi # compare x:y

 jge .L2 # jump if x>=y

.L3:

 addl %esi, %eax # x+=y

 cmpl %eax, %esi # compare y:x

 jg .L3 # jump if y > x

.L2:

 ret

There are, of course, many other ways of writing this function and all received

credit provided they used the correct x86-64 conventions and properly translated

the C code.

