
 CSE 410 Final Exam Sample Solution 12/10/13

 Page 1 of 10

Question 1. (15 points) (some mystery code, or the ghosts of midterms past)

Once again one of the interns has lost the source code to an important function. We have

been able to discover that the function starts like this:

int f(int a, int b, int c) { ... }

But beyond that, all we’ve been able to find is an assembly file produced by gcc when it

compiled the function on an x86-64 machine:

f: cmpl %esi, %edi

 jle .L2

 leal (%rsi,%rdx), %eax

 ret

.L2:

 addl %esi, %edi

 cmpl %edx, %esi

 movl $0, %eax

 cmovg %edi, %eax # cmovg = conditional move greater

 ret

In the space below, translate the assembly language function given above into C. The

function heading is written for you. (Reminder: there is useful reference information on

the last two pages of the exam.)

int f(int a, int b, int c) {

 if (a > b)

 return b+c;

 else if (b > c)

 return a+b;

 else

 return 0;

}

Notes: Argument assignments to registers:

 %rdi a

 %rsi b

 %rdx c

 CSE 410 Final Exam Sample Solution 12/10/13

 Page 2 of 10

Question 2. (15 points) (buffers and stack frames) Consider the following function,

which calls the same Gets function used in the buffer overflow lab to read a sequence of

bytes.

int f(int a, int b) {

 char s[2];

 int x=a;

 int y=x+b;

 Gets(s);

 return y;

}

When this function was compiled on an x86-64 machine, gcc produced the following

assembly code:

f: pushq %rbp

 movq %rsp, %rbp

 subq $32, %rsp #### location for (a), next page ####

 movl %edi, -20(%rbp)

 movl %esi, -24(%rbp)

 movl -20(%rbp), %eax

 movl %eax, -4(%rbp)

 movl -24(%rbp), %eax

 movl -4(%rbp), %edx

 addl %edx, %eax

 movl %eax, -8(%rbp)

 leaq -16(%rbp), %rax

 movq %rax, %rdi

 call Gets

 movl -8(%rbp), %eax

 leave

 ret

Answer questions about this function on the next page. You may remove this page for

reference if you wish.

 CSE 410 Final Exam Sample Solution 12/10/13

 Page 3 of 10

Question 2. (cont.) (a) (10 points) Below is a chart showing the layout of the stack right

after execution of the pushq/movq/subq instructions at the beginning of the function,

marked by #### in the code. The picture is drawn using 32-bit words since almost all of

the values in the stack frame are 32-bit integers.

Label each 32-bit word below with the name of the variable or temporary value it

contains. If some word or parts of a word are unused you should leave them blank. Be

sure to show where the char array s is located, even though it does not occupy a full 32-

bit word. Also show where the return address and old %rbp values that have been

pushed onto the stack are located. (And remember that those addresses are 64-bit values

so they will occupy two of these 32-bit slots.)

+16

+12 return address

+8 return address

+4 old %rbp

Offset from %rbp: 0 old %rbp ← %rbp

-4 x

-8 y

-12

-16 unused | s[1] | s[0]

-20 copy of a

-24 copy of b

-28

-32 ← %rsp

-36

(b) (5 points) Give the values of a string of bytes to be read by Gets that will cause this

function to return the value 7 instead of the value it would normally return. You should

give your answer as a string of hex digits giving the byte values for the input in the same

format used as input to sendstring in lab 3, i.e., a pair of hex digits for each byte, like

31 32 33.

Any string that has 8 bytes of padding followed by the 32-bit integer 7 will work,

e.g., xx xx xx xx xx xx xx xx 07 00 00 00 (where xx is any 2-digit hex

number). The final 00 could actually be omitted since Gets will provide a 00 byte

at the end, but it would be better style to show this explicitly.

 CSE 410 Final Exam Sample Solution 12/10/13

 Page 4 of 10

Some short questions about the memory hierarchy. You are not required to show your

work, but it’s not a bad idea to show some details in case we need to figure out what

happened if we need to award partial credit.

Question 3. (7 points) (cache geometry) The Intel i7 processor has a L3 cache with the

following characteristics:

 Total data size 8MB

 Block size 64 bytes

 16-way associative

How many sets (rows) are there in this cache?

Total size is 8MB = 2
23

Each set (row) has 16*64 = 2
4
 * 2

6
 = 2

10
 = 1024 bytes

Total number of rows is then 2
23

 / 2
10

 = 2
13

 = 8192 (8K)

Question 4. (7 points) (access times) Suppose we have a memory system with a single-

level cache and the following characteristics:

 Cache access time 2 nsec

 Main memory access time 300 nsec

 Hit ratio 98%

What is the average access time of this memory system?

All memory accesses include 2 nsec to get data from the cache. 2% of them require

an additional 300 nsec. to get data from main memory on a miss. Average access

time is then

 2 + 300*.02 = 2+6 = 8 nsec.

 CSE 410 Final Exam Sample Solution 12/10/13

 Page 5 of 10

Question 5. (14 points) (hit or miss?)

(a) (7 points) Suppose we have a direct-mapped cache containing 128 (0x80) total bytes

with 32-byte (0x20) cache blocks. What is the miss rate of the following code?

 double x[32], y[32];

 int i;

 for (i = 0; i < 32; i++) {

 y[i] = 2*x[i];

 }

Assumptions:

 The cache is initially empty.

 Array x begins at memory address 0x100 and array y begins at memory address

0x200.

 All variables and code other than the arrays x and y are stored in registers (i.e.,

they do not affect the data cache).

 Doubles occupy 8 bytes each.

Miss rate = 100%

Reason (not required): Because it is a direct-mapped cache and because x and y are

exactly 0x100 bytes apart in memory, for any particular value of i the elements

x[i] and y[i] will map to the same cache block. Each time we reference an

element of x or y it evicts the previous contents of that cache block if it was data

belonging to the other array, so every reference to an array element is either a cold

miss or a conflict miss.

(b) (7 points) Now suppose we replace the cache from part (a) with another cache that has

the same total size of 128 bytes, same block size of 32 bytes, but is 2-way associative

(i.e., each set has two blocks and there are half as many sets as in part (a)). What is the

miss rate now if we execute the same code from part (a) under the same assumptions

except for these changes?

Miss rate = 25%

Reason (not required): With a 2-way associative cache we can have one block from

x and the corresponding block of y in the cache at the same time. The first time

each block is referenced it is a miss, but we then load a block with 4 doubles into the

cache. The remaining 3 doubles are in the cache when they are referenced.

 CSE 410 Final Exam Sample Solution 12/10/13

 Page 6 of 10

Question 6. (10 points) (which is best?) Here are two functions that store zeros in the

upper-right triangular half of a square array.

#define SIZE 10000

void zero1(double matrix[SIZE][SIZE]) {

 int r,c;

 for (c=0; c<SIZE; c++) {

 for (r=0; r<=c; r++) {

 matrix[r][c] = 0.0;

 }

 }

}

void zero2(double matrix[SIZE][SIZE]) {

 int r,c;

 for (r=0; r<SIZE; r++) {

 for (c=r; c<SIZE; c++) {

 matrix[r][c] = 0.0;

 }

 }

}

Given that they both do the same thing, is there any reason to prefer one over the other?

Give a brief technical justification for your answer.

The second one, zero2, is much better. That one references the array in row-

major order and each cache block is loaded once and completely initialized before

moving on to the next one. The first version, zero1, goes down the array by

columns and, since the matrix almost certainly is much larger than the cache,

almost every array element reference is a cache miss that forces out a previously

loaded block. Those evicted cache blocks have to be reloaded when we need to store

0.0 in later columns of the same row.

 CSE 410 Final Exam Sample Solution 12/10/13

 Page 7 of 10

Question 7. (25 points) (caches and virtual memory)

We have a memory system with the following characteristics:

 16 bit virtual addresses (4 hex digits), page size of 64 bytes

 12 bit physical addresses (3 hex digits), same page size (of course)

 Memory cache with 16 entries, direct mapped, 4-byte blocks

 Page table with 1024 entries; only the first 16 shown below

 TLB with 16 entries, 4-way set associative

The current state of the memory system is shown in the following tables. You can

remove this page for reference while working on the parts of this question.

TLB

Page Table (First 16 entries)

Cache

 CSE 410 Final Exam Sample Solution 12/10/13

 Page 8 of 10

Question 7. (cont.) (a) (5 points) Label the bits corresponding to each of the

components of the virtual address, namely, the virtual page number (VPN), the virtual

page offset (VPO), the TLB set index (TLBI), and the TLB tag value (TLBT).

|----------------------TLBT---------------------- |---TLBI-- |

|------------------------------VPN------------------------------|----------------VPO-----------------|

(b) (5 points) Label the bits corresponding to each of the components of the physical

address, namely, the physical page number (PPN), the physical page offset (PPO), the

cache set index (CI), the cache tag value (CT), and the cache byte offset (CO).

 |--------------------CT------------------|------------CI-------------|----CO-----|

 |------------------PPN------------------|------------------PPO-------------------|

(c) (15 points) Indicate the result when each virtual address in the table below is used to

access memory. You should specify whether there is a TLB miss, page fault, and/or

cache miss, the physical address referenced, and the contents of memory at that location.

In some cases there is not enough information to determine what value is accessed or

whether there is a cache miss or not. In those cases, write ND (for Not Determinable) in

the appropriate entry. Fill in each row of the table using the initial conditions shown in

the tables on the previous page; accesses in previous rows do not affect the result of later

rows. (Hint: There is a binary-hex conversion table at the end of the test.)

Virtual Address Physical Address Value TLB Miss? Page Fault? Cache Miss?

0x03A0 0x460 0x3A N N N

0x006C ND ND Y Y ND

0x0002 0xA02 0x23 Y N N

 CSE 410 Final Exam Sample Solution 12/10/13

 Page 9 of 10

A couple of short questions on disks and files.

Question 8. (6 points) Suppose we have a hard disk that rotates at 6000 rpm (100

revolutions per second) and has an average seek time of 5 msec. What is the average

expected time to access a block at some arbitrary location on the disk?

Access time is the sum of seek time and rotational latency. The seek time is given as

5 msec. The disk rotates once every 10 msec., which means the average latency is

1/2 of that, or 5 msec. The expected time to access a block is 10 msec.

Question 9. (6 points) What’s the difference between the directory entry for a file and

the file’s inode on a classic Unix file system? A brief answer should be sufficient.

The inode is the basic data structure that defines the file and points to its data

blocks.

A directory entry contains the name of the file and its inode number.

 CSE 410 Final Exam Sample Solution 12/10/13

 Page 10 of 10

Question 10. (15 points) Almost done! Consider the following program:

int main() {

 int p, q;

 int val = 1;

 p = fork();

 printf("fork returned %d\n", p);

 if (p > 0) {

 q = fork();

 val++;

 printf("fork returned %d\n", q);

 printf("val = %d\n", val);

 } else {

 printf("adios\n");

 }

 return 0;

}

For this problem, assume that there are no other processes on the system, and that when

we run this program, the process id of the initial process is 1000. Each time a new

process is created by fork() the new process is assigned the next available number:

1001, 1002, and so forth.

Below show two possible output sequences written by this program when it is executed.

If the program can only produce one possible output sequence, give that sequence and

explain why it is the only one possible.

Here are two possibilities (actually observed by executing the code! – except process

numbers have been changed)

fork returned 1001

fork returned 0

adios

fork returned 1002

val = 2

fork returned 0

val = 2

fork returned 1001

fork returned 1002

val = 2

fork returned 0

fork returned 0

val = 2

adios

Best wishes for the holidays!

