
CSE410 Spring 2012 – Midterm Exam (4 May 2012)

Please read through the entire examination first! We designed this exam so that it can be

completed in 50 minutes and, hopefully, this estimate will prove to be reasonable.

There are 4 problems worth a total of 100 points. The point value of each problem is

indicated in the table below. Write your answer neatly in the spaces provided. If you

need more space (you shouldn't), you can write on the back of the sheet where the

question is posed, but please make sure that you indicate clearly the problem to which the

comments apply. Do NOT use any other paper to hand in your answers. If you have

difficulty with part of a problem, move on to the next one. They are mostly independent

of each other.

The last page of the test contains a page of powers-of-two and reminders about some

common x86 instructions and conventions. Feel free to separate that page from the exam

if it is convenient. Other pages containing code for questions can also be detached if

convenient – the bottom of the page will indicate if this is okay.

The exam is CLOSED book and CLOSED notes. Please do not ask or provide anything

to anyone else in the class during the exam. Make sure to ask clarification questions

early so that both you and the others may benefit as much as possible from the answers.

Name: ________________________

Problem Max Score Score

1 24

2 26

3 24

4 26

TOTAL 100

 CSE 410 Midterm Exam, Spring 2012 2

1. Bits (24 points) The following two questions are similar to the questions in Lab 1 and

the same ground rules apply:

 Assume all values are 32-bit integers.

 You may only use the operators !, ~, &, ^, |, +, <<, and >> and integer constants

from 0 through 255 (0xFF). No other operators, control constructs, data

structures, etc., and you may not call other functions.

 You may only use function arguments and any additional int local variables you

declare. No global variables or other external data.

(a) /* Return 1 if x is even or 0 if x is odd. */

 /* Note: x may be positive or negative. */

 int isEven(int x) {

 return _______________________;

 }

(b) /* Return x if x >= 0. If x < 0 return 0. */

 int nonNeg(int x) {

 return _______________________;

 }

 CSE 410 Midterm Exam, Spring 2012 3

2. x86 and C code. (26 points)

One of the new interns managed to erase the only remaining copy of a C function. We do

have a 32-bit x86 assembly language version of it, but we need your help to reconstruct

the original code. Here is the assembly language version:

mystery:

 pushl %ebp

 movl %esp, %ebp

 subl $16, %esp

 movl $0, -8(%ebp)

 movl 8(%ebp), %eax

 movl %eax, -4(%ebp)

 jmp .L2

.L4:

 cmpl $0, -4(%ebp)

 jns .L3 # jns means jump if ~SF, i.e., jump if non-negative

 addl $1, -8(%ebp)

.L3:

 sall -4(%ebp)

.L2:

 cmpl $0, -4(%ebp)

 jne .L4

 movl -8(%ebp), %eax

 leave

 ret

We have managed to reconstruct some of the C code. Your job is to fill in the blanks in

the code on the next page to create a C function equivalent to the generated code above,

and then describe what the function does.

You can detach this page if it is convenient – it does not need to be turned in.

Hints: Remember that the result of an integer-valued function is returned in register eax.

It would be worth taking a minute to figure out where variables are stored in memory or

registers.

 CSE 410 Midterm Exam, Spring 2012 4

2. x86 Code and C (cont.)

a) (20 points) Complete the C function below so it is equivalent to the x86 version given

on the previous page. You should only write code in the given blank areas. Do not add

to or rearrange the statements. (This function, with the blanks filled in, was used to

generate the x86 code, although the compiler did change the order of the x86 code

somewhat compared to the original C code.)

int mystery(int arg) {

 int ans = 0;

 int n = arg;

 while (_____________________________) {

 if (_______________________) {

 ans = _______________________ ;

 }

 n = ______________________________ ;

 }

 return ans;

}

b) (6 points) What value does this function compute and return?

 CSE 410 Midterm Exam, Spring 2012 5

3. x86 Code. (24 points)

The following C function computes an integer value derived from the integers in an

array:

int hash(int a[], int n) {

 int k;

 int ans = 0;

 for (k = 0; k < n; k++) {

 ans = 9*ans + a[k];

 }

 return ans;

}

When this code was compiled by gcc on an 32-bit x86 machine it produced the following

assembly code, except that the body of the loop has been replaced by an empty box.

hash:

 pushl %ebp

 movl %esp, %ebp

 pushl %ebx

 movl 8(%ebp), %ebx # copy a to %ebx

 movl 12(%ebp), %ecx # copy n to #ecx

 movl $0, %eax

 movl $0, %edx

 testl %ecx, %ecx

 jle .L3 # return if n <= 0

.L6:

.L3:

 popl %ebx

 popl %ebp

 ret

On the next page there are several sequences of code that might correctly implement the

body of the loop. Your job is to look at each sequence and circle yes if it can be inserted

in the empty box above to create a correct translation of the C code. Circle no if the code

does not work properly. You do not need to supply any reasons for your answers.

You may remove this page from the exam for reference while working on the problem if

that is convenient.

 CSE 410 Midterm Exam, Spring 2012 6

Question 3. (cont.) For each of the following blocks of code, circle yes if it correctly

implements the loop body for the code on the previous page. Circle no if it does not.

(a) Yes No

 imull $9, %eax

 addl (%ebx,%edx,4), %eax

 addl $1, %edx

 cmpl %ecx, %edx

 jne .L6

(b) Yes No

 leal (%eax,%eax,8), %eax

 leal (%ebx,%edx,4), %edx

 addl (%edx), $eax

 addl $1, %edx

 cmpl %ecx, %edx

 jne .L6

(c) Yes No

 leal 8(%eax,%eax), %eax

 addl (%ebx,%edx,4), %eax

 addl $1, %edx

 cmpl %ecx, %edx

 jne .L6

 CSE 410 Midterm Exam, Spring 2012 7

4. Analyzing Bugs in Assembly Code (26 points)

The boss at Apps ‘R Us thinks we have a killer app on our hands. It reads a number from

1-12 representing a month of the year, and suggests an interesting activity for that month.

What it’s supposed to do is to suggest the following activities for these months:

 1, 2 (i.e., Jan., Feb.): go skiing

 3: watch TV

 4, 5, 6: walk

 7, 8, 9: hike

 10, 11: run

 12: go skiing.

Unfortunately, all we’ve got is a x86-64 binary app on our smartphone that isn’t working.

Using the attached gdb debugger we’ve been able to disassemble the code and see that it

reads an integer into location 0xc(%rsp), then attempts to use that to call appropriate

functions to suggest the various activities.

Dump of assembler code for function main:

 0x000000000040058f <+0>: sub $0x18,%rsp

 0x0000000000400593 <+4>: lea 0xc(%rsp),%rsi # int address

 0x0000000000400598 <+9>: mov $0x400762,%edi

 0x000000000040059d <+14>: mov $0x0,%eax

 0x00000000004005a2 <+19>: callq 0x400430 <scanf> # read int

 0x00000000004005a7 <+24>: cmpl $0xc,0xc(%rsp)

 0x00000000004005ac <+29>: ja 0x4005dc <main+77>

 0x00000000004005ae <+31>: mov 0xc(%rsp),%eax

 0x00000000004005b2 <+35>: jmpq *0x400768(,%rax,8)

 0x00000000004005b9 <+42>: mov $0x0,%eax

 0x00000000004005be <+47>: callq 0x400530 <ski>

 0x00000000004005c3 <+52>: jmp 0x4005f2 <main+99>

 0x00000000004005c5 <+54>: mov $0x0,%eax

 0x00000000004005ca <+59>: callq 0x400543 <hike>

 0x00000000004005cf <+64>: nop # does nothing

 0x00000000004005d0 <+65>: jmp 0x4005f2 <main+99>

 0x00000000004005d2 <+67>: mov $0x0,%eax

 0x00000000004005d7 <+72>: callq 0x400556 <run>

 0x00000000004005dc <+77>: mov $0x0,%eax

 0x00000000004005e1 <+82>: callq 0x40057c <watch_tv>

 0x00000000004005e6 <+87>: jmp 0x4005f2 <main+99>

 0x00000000004005e8 <+89>: mov $0x0,%eax

 0x00000000004005ed <+94>: callq 0x400569 <walk>

 0x00000000004005f2 <+99>: mov $0x0,%eax

 0x00000000004005f7 <+104>: add $0x18,%rsp

 0x00000000004005fb <+108>: retq

(You can remove this page for reference while continuing to work on the problem on the

next page.)

 CSE 410 Midterm Exam, Spring 2012 8

4. Analyzing Bugs in Assembly Code (continued)

The code appears to reference memory located at 0x400768, so we also examined that

part of memory using the debugger:

x /18gx 0x400768

0x400768: 0x00000000004005dc 0x00000000004005b9

0x400778: 0x00000000004005b9 0x00000000004005dc

0x400788: 0x00000000004005e8 0x00000000004005e8

0x400798: 0x00000000004005dc 0x00000000004005c5

0x4007a8: 0x00000000004005c5 0x00000000004005c5

0x4007b8: 0x00000000004005d2 0x00000000004005d2

0x4007c8: 0x00000000004005b9 0x000000000040063a

0x4007d8: 0x000000000040060e 0x000000000040060e

0x4007e8: 0x000000000040063a 0x0000000000400630

The code contains bugs that keep it from working as described at the beginning of the

problem. Explain what it does wrong by giving the input numbers that cause it to call

incorrect or extra functions, and describe what happens when those numbers are entered.

For full credit you need to succinctly describe what’s wrong. Don’t give a long-winded

explanation of what every line of code does.

 CSE 410 Midterm Exam, Spring 2012 9

REFERENCE:

Powers of 2:

2
0
 = 1

2
1
 = 2

2
2
 = 4

2
3
 = 8

2
4
 = 16

2
5
 = 32

2
6
 = 64

2
7
 = 128

2
8
 = 256

2
9
 = 512

2
10

 = 1024

2
11

 = 2048

2
12

 = 4096

Assembly Code Instructions:

pushl push a value onto the stack

leave restore ebp from the stack

ret pop return address from stack and jump there

movl move 4 bytes between immediate values, registers and memory

movzbl move 1 byte into the low-order byte of a long word, filling the other

 3 bytes with 0s.

movsbl move 1 byte into the low-order byte of a long word, filling the other

 3 bytes by sign-extending the low-order byte that was moved

addl add first operand to second with result stored in second

subl subtract first operand from second with result stored in second

imull multiply first operand and second with result stored in second

sall left shift second operand by count given in first operand

sarl right shift second operand by count given in first operand

andl logical bitwise AND of first and second operands, result stored in second

xorl logical bitwise XOR of first and second operands, result stored in second

jmp jump to address

je conditional jump to address if zero flag set

jne conditional jump to address if zero flag is not set

cmpl subtract first operand from second and set flags

testl logical and of first and second operands to set flags

nop “no operation” – does nothing (sometimes generated by compilers to pad

 or align generated code)

x86-64 Parameter Registers

First 6 arguments are passed in registers %rdi, %rsi, %rdx, %rcx, %r8, and %r9 in that

order.

