
 CSE 410 Final Exam 6/05/12

 Page 1 of 14

Name ________________________________

Do not write your id number or any other confidential information on this page.

There are 13 problems worth a total of 100 points. The point value of each problem is

indicated in the table on the next page. Write your answer neatly in the spaces provided.

If you need more space (you shouldn't), you can write on the back of the sheet where the

question is posed, but please make sure that you indicate clearly the problem to which the

comments apply. Do NOT use any other paper to hand in your answers. If you have

difficulty with part of a problem, move on to the next one. They are mostly independent

of each other.

The last page of the test contains a table of powers-of-two and reminders about some

common x86 instructions and conventions. Feel free to separate that page from the exam

if it is convenient. Other pages containing code for questions can also be detached if

convenient – the bottom of the page will indicate if this is okay.

The exam is CLOSED book and CLOSED notes. Please do not ask or provide anything

to anyone else in the class during the exam. Make sure to ask clarification questions

early so that both you and the others may benefit as much as possible from the answers.

Please wait to turn the page until everyone is told to begin.

 CSE 410 Final Exam 6/05/12

 Page 2 of 14

Score _________________ / 100

1. ______ / 10

2. ______ / 10

3. ______ / 10

4. ______ / 10

5. ______ / 8

6. ______ / 8

7. ______ / 3

8. ______ / 4

9. ______ / 3

10. ______ / 6

11. ______ / 6

12. ______ / 12

13. ______ / 10

 CSE 410 Final Exam 6/05/12

 Page 3 of 14

Question 1. (10 points) (bits) An array of boolean (0/1) values can be stored very

compactly if we store 8 bits of the array in each byte. For instance here is an array of 24

bits stored in 3 bytes.

0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 1

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 2 1 0

In this array, bits 0, 7, 11-14, and 17 are 1 and all the rest are 0. The bits of the array are

numbered from right to left. The bytes holding the bits are also numbered right to left, as

shown by the numbers in the last row.

For this problem, complete the following C function so it returns the value of the

specified bit in the array. You may assume that parameter index has an appropriate

value (i.e., you don’t need to worry about what to do if it is negative, or larger than the

array size, or too large to be stored in a signed int variable). The array pointer b has

type char *, which means that it points to an array of bytes.

Hint: shifts, &, etc. Suggestion: break your code into a few small assignment statements

to make it easier to follow.

 /* return the value of the bit whose location in */

 /* bit array b is given by the variable index. */

 int getBit(char * b, int index) {

 }

 CSE 410 Final Exam 6/05/12

 Page 4 of 14

Question 2. (10 points) (some mystery code, or the ghosts of midterms past)

Once again one of the interns has lost the source code to an important function. We have

been able to discover that the function starts and ends like this:

int g(int x, int y) {

 int ans;

 …

 return ans;

}

But beyond that, all we’ve been able to find is some output produced using gdb. When

we disassemble the code, here’s what we get:

(gdb) disas g

Dump of assembler code for function g:

 0x0000000000400474 <+0>: push %rbp

 0x0000000000400475 <+1>: mov %rsp,%rbp

 0x0000000000400478 <+4>: mov %edi,-0x14(%rbp)

 0x000000000040047b <+7>: mov %esi,-0x18(%rbp)

 0x000000000040047e <+10>: cmpl $0x6,-0x14(%rbp)

 0x0000000000400482 <+14>: ja 0x4004b4 <g+64>

 0x0000000000400484 <+16>: mov -0x14(%rbp),%eax

 0x0000000000400487 <+19>: mov 0x4005d8(,%rax,8),%rax

 0x000000000040048f <+27>: jmpq *%rax

 0x0000000000400491 <+29>: movl $0x1,-0x4(%rbp)

 0x0000000000400498 <+36>: jmp 0x4004bb <g+71>

 0x000000000040049a <+38>: mov -0x18(%rbp),%eax

 0x000000000040049d <+41>: mov %eax,-0x4(%rbp)

 0x00000000004004a0 <+44>: jmp 0x4004bb <g+71>

 0x00000000004004a2 <+46>: movl $0x7,-0x4(%rbp)

 0x00000000004004a9 <+53>: jmp 0x4004bb <g+71>

 0x00000000004004ab <+55>: movl $0x6,-0x4(%rbp)

 0x00000000004004b2 <+62>: jmp 0x4004bb <g+71>

 0x00000000004004b4 <+64>: movl $0x0,-0x4(%rbp)

 0x00000000004004bb <+71>: mov -0x4(%rbp),%eax

 0x00000000004004be <+74>: pop %rbp

 0x00000000004004bf <+75>: retq

And a look at the memory locations apparently referenced in the code shows this:

(gdb) x /10gx 0x4005d8

0x4005d8: 0x00000000004004b4 0x000000000040049a

0x4005e8: 0x000000000040049a 0x0000000000400491

0x4005f8: 0x00000000004004a2 0x00000000004004ab

0x400608: 0x00000000004004a2 0x0000002c3b031b01

0x400618: 0xfffffe6400000004 0xfffffeb000000048

(continued next page – feel free to remove this page for reference)

 CSE 410 Final Exam 6/05/12

 Page 5 of 14

Question 2 (cont.) In the space below, translate the assembly language function given

on the previous page into C. The function heading and return statement at the end are

written for you.

int g(int x, int y) {

 int ans;

 return ans;

}

 CSE 410 Final Exam 6/05/12

 Page 6 of 14

Question 3. (10 points) (buffers) Consider the following function, which calls the same

Gets function used in the buffer overflow lab to read a sequence of bytes.

int f() {

 int x, y;

 char s[2];

 x = 1;

 y = x+1;

 Gets(s);

 return y;

}

When this function was assembled on an x86-64 machine, it produced the following

assembly code:

f: pushq %rbp

 movq %rsp, %rbp

 subq $16, %rsp

 movl $1, -4(%rbp)

 movl -4(%rbp), %eax

 addl $1, %eax

 movl %eax, -8(%rbp)

 leaq -16(%rbp), %rax

 movq %rax, %rdi

 call Gets

 movl -8(%rbp), %eax

 leave

 ret

Your job is to create a string of bytes to be read by Gets that will cause this function to

return the value 5 instead of the value it ordinarily returns, which is 2.

You should give your answer as a string of hex digits giving the byte values for the input

in the same format used as input to sendstring in lab 3, i.e., a pair of hex digits for

each byte, like 31 32 33.

Hint: you will find it useful to sketch the layout of the stack frame and the variables in it

to decide how many bytes your exploit string needs and what the contents should be.

 CSE 410 Final Exam 6/05/12

 Page 7 of 14

Question 4. (10 points) (caches) You are not required to show your work on these

questions, but showing some work might help if it is necessary to award partial credit.

(a) Suppose we have a 512 byte, 2-way set associative cache with a block size of 32

bytes. How many sets (rows) are there in this cache?

(b) Suppose we have a memory system with a single level cache. The cache has an

access time of 2ns and main memory has an access time of 200ns. The average hit rate is

98%. What is the effective access time of this memory system?

(c) True or false: Increasing the associativity of a cache is likely to reduce conflict

misses.

(d) True or false: Even a small decrease in the miss rate of a cache can result in a

dramatic performance increase.

 CSE 410 Final Exam 6/05/12

 Page 8 of 14

Question 5. (8 points) (Hit or miss?)

Suppose we have a direct-mapped cache containing 128 bytes total with 16-byte cache

blocks. What is the miss rate of the following code?

 int x[2][32];

 int i;

 int sum = 0;

 for (i = 0; i < 32; i++) {

 sum += x[0][i] * x[1][i];

 }

Assumptions:

 The cache is initially empty.

 Array x begins at memory address 0x0 and is stored in row-major order.

 All variables and code other than the array x itself are stored in registers (i.e., they

do not affect the cache).

 Integers occupy 4 bytes each.

 CSE 410 Final Exam 6/05/12

 Page 9 of 14

Question 6. (8 points) (Virtual memory) Suppose we have a system with 32-bit virtual

addresses, 20-bit physical (real memory) addresses, and 8K pages.

(a) How many bits are included in the virtual page number and page offset parts of a

virtual address on this system?

 Virtual page number bits ________________

 Page offset bits __________________

(b) How many bits are included in the physical page number part of a physical (real

memory) address?

 Physical page number bits ________________

(c) How many page table entries (PTEs) are needed for this virtual memory system?

 Number of PTEs _______________________

Question 7. (3 points) (VM again) One of the reasons a virtual memory system may

perform poorly is if it starts thrashing. Very briefly, what does this mean?

 CSE 410 Final Exam 6/05/12

 Page 10 of 14

Question 8. (4 points) (something exceptional) After the operating system handles an

exception, the system can either resume execution of the interrupted process at the

instruction following the one that caused the exception, resume execution by re-executing

the instruction that caused the exception, or terminate the process. Below is a list of

possible exceptions. For each one, indicate by writing a, b, or c what the OS would

normally do after handling the exception.

(a) Continue execution at the instruction following the one that generated the exception.

(b) Continue execution by re-executing the instruction that caused the exception.

(c) Terminate the process

______ Division by 0

______ Process causes a page fault

______ Memory reference out of bounds (e.g., segfault)

______ System call (int) instruction executed by process to read data

Question 9. (3 points) In the classic Unix file system, a directory is a special file

containing one entry for each file in that directory. What information is stored in the

directory entry itself along with the file name? Place an X next to all of the following

that are found in the directory entry, and only check items that are included in the

directory file itself as opposed to elsewhere on the disk. Leave all the answers blank if

none of them apply.

_____ disk address of first file data block

_____ inode number of the file

_____ full path name of the file (e.g., /a/b/c)

 CSE 410 Final Exam 6/05/12

 Page 11 of 14

Question 10. (6 points) (OS hardware support) Some of the features included in modern

processors were introduced because they were needed to implement multi-processing

operating systems. For each of the following, put an X in the blank space if the feature is

included to provide support for operating systems. Leave the entry blank if it is an

ordinary feature of the instruction set not specific to operating system support.

_____ condition code registers

_____ system call (int) instruction

_____ privileged execution mode

_____ call instruction

_____ stack pointer (sp) register

_____ interval timer (can be set to cause an interrupt/exception after a short time)

Question 11. (6 points) (OS data structures) Which of the following are items that are

likely to be found in the Process Control Block (PCB) used by the operating system to

describe a process? Place an X in the blank space if it is something that would appear in

a PCB, leave the entry blank if it is not.

_____ Current process state (running, waiting, etc.)

_____ Current time of day

_____ CPU time used by process

_____ Link to next PCB on the same linked list (ready or waiting queue, for example)

_____ Contents of the process’ virtual memory page tables

_____ Process program counter if the process is not running.

 CSE 410 Final Exam 6/05/12

 Page 12 of 14

Question 12. (12 points) (Compare and contrast) For each of the following pairs of

terms, give a very brief explanation of the key difference between the two terms or

concepts. “Very brief” = a sentence or two that shows you understand the key ideas.

(a) program, process

(b) write-through, write-back

(c) temporal locality, spatial locality

(d) process, thread

 CSE 410 Final Exam 6/05/12

 Page 13 of 14

Question 13. (10 points) (finis) Consider the following program:

int main() {

 if (fork() != 0) {

 printf("good ");

 } else {

 fork();

 printf("bye ");

 printf("y'all ");

 }

 return 0;

}

We’d like to know what output can be produced when this program is run. If it is

possible for the program to produce different output if it is run more than once, give two

of the possible results. If it always produces the same output, give that output and

indicate that it is unique.

Have a great summer!!!

 CSE 410 Final Exam 6/05/12

 Page 14 of 14

REFERENCE:

Powers of 2:

2
0
 = 1

2
1
 = 2

2
2
 = 4

2
3
 = 8

2
4
 = 16

2
5
 = 32

2
6
 = 64

2
7
 = 128

2
8
 = 256

2
9
 = 512

2
10

 = 1024

2
11

 = 2048

2
12

 = 4096

2
20

 = 1048576

2
30

 = 1073741824

2
32

 = 4294967296

Assembly Code Instructions:

pushl push a value onto the stack

leave restore ebp or rbp from the stack

ret pop return address from stack and jump there

movl move 4 bytes between immediate values, registers and memory

movzbl move 1 byte into the low-order byte of a long word, filling the other

 3 bytes with 0s.

movsbl move 1 byte into the low-order byte of a long word, filling the other

 3 bytes by sign-extending the low-order byte that was moved

addl add first operand to second with result stored in second

subl subtract first operand from second with result stored in second

imull multiply first operand and second with result stored in second

sall left shift second operand by count given in first operand

sarl right shift second operand by count given in first operand

andl logical bitwise AND of first and second operands, result stored in second

xorl logical bitwise XOR of first and second operands, result stored in second

jmp jump to address

je conditional jump to address if zero flag set

jne conditional jump to address if zero flag is not set

cmpl subtract first operand from second and set flags

testl logical and of first and second operands to set flags

nop “no operation” – does nothing

x86-64 Parameter Registers

First 6 arguments passed in registers %rdi, %rsi, %rdx, %rcx, %r8, and %r9 in that order.

