
CSE 410
Computer Systems

Hal Perkins
Spring 2010

L t 22 Di k & Fil S tLecture 22 – Disks & File Systems



Readings and ReferencesReadings and References

• Reading g
– Sec. 6.3 (disk characteristics), Computer  Organization & 

Design, Patterson & Hennessy

S O S C– Sec. 10.1-10.3, 10.6, Operating System Concepts, 
Silberschatz, Galvin, and Gagne.  The rest of chs. 10-12 
have much useful information if you have time to read them.

2



Hard drivesHard drives

• The ugly guts of a hard disk.
– Data is stored on double-sided magnetic disks called platters.
– Each platter is arranged like a record, with many concentric tracks.
– Tracks are further divided into individual sectors, which are the basic unit of 

data transferdata transfer.
– Each surface has a read/write head like the arm on a record player, but all 

the heads are connected and move together.
• A 1TB Hitachi Deskstar has:

– 2 platters (4 surfaces)
– 4 heads
– 512 bytes/sector

L i l l t ( d t ti ll )

Platters

Tracks

– Logical layout (mapped automatically):
• 16 heads
• 63 sectors/track
• 16 383 cylinders (tracks)

Platter

Sectors

16,383 cylinders (tracks)
Track

3



Accessing data on a hard diskAccessing data on a hard disk

• Accessing a sector on a track on a hard disk takes a lot of time!
— Seek time measures the delay for the disk head to reach the track.
– A rotational delay accounts for the time to get to the right sector.
– The transfer time is how long the actual data read or write takes.

There ma be additional o erhead for the operating s stem or the controller– There may be additional overhead for the operating system or the controller 
hardware on the hard disk drive.

• Rotational speed, measured in revolutions per minute or RPM, partially 
determines the rotational delay and transfer time.y

Platter

Tracks

Track

Sectors

4



Estimating disk latencies (seek time)Estimating disk latencies (seek time)

• Manufacturers often report average seek times of 8-p g
10 ms.
– These times average the time to seek from any track to any 

other trackother track.

• In practice, seek times are often much better. 
– For example, if the head is already on or near the desired 

track, then seek time is much smaller. In other words, locality
is important!

– Actual average seek times are often just 2-3 ms.

5



Estimating Disk Latencies (rotational latency)Estimating Disk Latencies (rotational latency)

• Once the head is in place, we need to wait until the right sector 
is underneath the head.
– This may require as little as no time (reading consecutive sectors) 

or as much as a full rotation (just missed it).
– On average, for random reads/writes, we can assume that the disk 

spins halfway.

• Rotational delay depends partly on how fast the disk platters 
spin.

Average rotational delay = 0 5 x rotations x rotational speedAverage rotational delay = 0.5 x rotations x rotational speed

– For example, a 5400 RPM disk has an average rotational delay of:

0 5 t ti / (5400 t ti / i t ) 5 550.5 rotations / (5400 rotations/minute) = 5.55 ms

6



Estimating disk timesEstimating disk times

• The overall response time is the sum of the seek
time, rotational delay, transfer time, and overhead.

• Assume a disk has the following specifications.
– An average seek time of 9ms

A 5400 RPM t ti l d– A 5400 RPM rotational speed
– A 10MB/s average transfer rate
– 2ms of overheads

• How long does it take to read a random 1 024 byte sector?• How long does it take to read a random 1,024 byte sector?
– The average rotational delay is 5.55ms.
– The transfer time will be about (1024 bytes / 10 MB/s) = 0.1ms.
– The response time is then 9ms + 5.55ms + 0.1ms + 2ms = 16.7ms. That’s 

16,700,000 cycles for a 1GHz processor!
• One possible measure of throughput would be the number of random 

sectors that can be read in one second.

(1 sector / 16.7ms) x (1000ms / 1s) = 60 sectors/second.

7



Storage Latency:  
How Far Away is the Data?How Far Away is the Data?

Andromeda

Tape /Optical 
Robot

109 2,000 Years

Disk10 6 2 YearsPluto

Memory100 Olympia 1.5 hr

On Chip Cache
On Board  Cache

Memory 

2
10

100

This Building
This Room

10 min

2

Registers1 My Head 1 min

© 2004 Jim Gray, Microsoft Corporation 8



File systemsFile systems

• The concept of a file system is simplep y p
– the implementation of the abstraction for 

secondary storage
• abstraction = files

– logical organization of files into directories
the directory hierarchy• the directory hierarchy

– sharing of data between processes, people and 
machines

• access control, consistency, …

9



FilesFiles

• A file is a collection of data with some properties
– contents, size, owner, last read/write time, protection …

• Files may also have types
– understood by file system

• device, directory, symbolic link
– understood by other parts of OS or by runtime libraries

• executable, dll, source code, object code, text file, …j
• Type can be encoded in the file’s name or contents

– windows encodes type in name
• .com, .exe, .bat, .dll, .jpg, .mov, .mp3, …, , , , jpg, , p ,

– old Mac OS stored the name of the creating program along 
with the file

– unix has a smattering of bothg
• in content via magic numbers or initial characters (e.g., #!)

10



Basic operationsBasic operations
NTUnix

• CreateFile(name, CREATE)

• CreateFile(name, OPEN)

• create(name)

• open(name, mode)

• ReadFile(handle, …)

• WriteFile(handle, …)

Fl hFil B ff (h dl )

• read(fd, buf, len)

• write(fd, buf, len)

• sync(fd) • FlushFileBuffers(handle, …)

• SetFilePointer(handle, …)

• CloseHandle(handle )

• sync(fd)

• seek(fd, pos)

• close(fd) • CloseHandle(handle, …)

• DeleteFile(name)

• CopyFile(name)

close(fd)

• unlink(name)

• rename(old, new) py ( )

• MoveFile(name)

( , )

11



File access methodsFile access methods

• Some file systems provide different access methods that 
specify ways the application will access dataspecify ways the application will access data
– sequential access

• read bytes one at a time, in order
– direct accessdirect access

• random access given a block/byte #
– record access

• file is array of fixed- or variable-sized recordsy
– indexed access

• FS contains an index to a particular field of each 
record in a file

• apps can find a file based on value in that record• apps can find a file based on value in that record 
(similar to DB)

• Why do we care about distinguishing sequential from 
direct access?
– what might the FS do differently in these cases?

12



DirectoriesDirectories

• Directories provide:p
– a way for users to organize their files
– a convenient file name space for both users and FS’s

M t fil t t lti l l di t i• Most file systems support multi-level directories
– naming hierarchies (/, /usr, /usr/local, /usr/local/bin, …)

• Most file systems support the notion of current directoryMost file systems support the notion of current directory
– absolute names: fully-qualified starting from root of FS

bash$ cd /usr/local/bin

– relative names: specified with respect to current– relative names: specified with respect to current 
directory
bash$ cd /usr/local (absolute)
bash$ cd bin (relative, equivalent to cd /usr/local/bin)

13



Directory internalsDirectory internals

• A directory is typically just a file that happens to contain 
special metadata
– directory = list of (name of file, file attributes)
– attributes include such things as:g

• size, protection, location on disk, creation time, 
access time, …

– the directory list is usually unordered (effectivelythe directory list is usually unordered (effectively 
random)

• when you type “ls”, the “ls” command sorts the 
results for youresults for you

– Key difference from ordinary files: system will not allow 
user process to write a directory with ordinary I/O calls, 
even if the user created/owns it Why?even if the user created/owns it.  Why?

14



Path name translationPath name translation

• Let’s say you want to open “/one/two/three”
fd = open(“/one/two/three”, O_RDWR);

• What goes on inside the file system?
– open directory “/”  (well known, can always find)

h th di t f “ ” t l ti f “ ”– search the directory for “one”, get location of “one”
– open directory “one”, search for “two”, get location of “two”
– open directory “two”, search for “three”, get loc. of “three”
– open file “three”
– (of course, permissions are checked at each step)

• FS spends lots of time walking down directory paths
– this is why open is separate from read/write (session state)
– OS will cache prefix lookups to enhance performance

• /a/b, /a/bb, /a/bbb all share the “/a” prefix

15



Protection systemsProtection systems

• FS must implement some kind of protection system
– to control who can access a file (user)
– to control how they can access it (e.g., read, write, or 

exec)
• More generally:

– generalize files to objects (the “what”)
– generalize users to principals (the “who” user or program)generalize users to principals (the who , user or program)
– generalize read/write to actions (the “how”, or operations)

• A protection system dictates whether a given action 
performed by a given principal on a given object should beperformed by a given principal on a given object should be 
allowed
– e.g., you can read or write your files, but others cannot

d b t t it t it– e.g., your can read  /etc/motd but you cannot write to it

16



The original Unix file systemThe original Unix file system

• Dennis Ritchie and Ken Thompson, Bell Labs, 1969p , ,
• “UNIX rose from the ashes of a multi-organizational 

effort in the early 1960s to develop a dependable 
ti h i ti t ” M ltitimesharing operating system” -- Multics

• Designed for a “workgroup” sharing a single system
• Did its job exceedingly well• Did its job exceedingly well

– Although it has been stretched in many directions and made 
ugly in the process

A d f l t d i i i t d ff• A wonderful study in engineering tradeoffs

17



All Unix disks are divided into five partsAll Unix disks are divided into five parts

• Boot block
– can boot the system by loading from this block

• Superblock
– specifies boundaries of next 3 areas, and contains 

h d f f li t f i d d fil bl khead of freelists of inodes and file blocks
• i-node area

– contains descriptors (i-nodes) for each file on the disk; 
all i nodes are the same si e head of freelist is in theall i-nodes are the same size; head of freelist is in the 
superblock

• File contents area
fixed size blocks; head of freelist is in the superblock– fixed-size blocks; head of freelist is in the superblock

• Swap area
– holds processes that have been swapped out of 

memorymemory

18



SoSo …

• You can attach a disk to a dead system …y
• Boot it up …
• Find, create, and modify files …

– because the superblock is at a fixed place, and it 
tells you where the i-node area and file contents 
area arearea are

– by convention, the second i-node is the root 
directory of the volume

19



i-node formati node format

• User number
• Group number
• Protection bits

Ti (fil l t d fil l t itt i d l t itt )• Times (file last read, file last written, inode last written)
• File code:  specifies if the i-node represents a directory, an 

ordinary user file, or a “special file” (typically an I/O device)y p ( yp y )
• Size:  length of file in bytes
• Block list:  locates contents of file (in the file contents area)

thi !– more on this soon!
• Link count:  number of directories referencing this i-node

20



The flat (i-node) file systemThe flat (i node) file system

• Each file is known by a number, which is the number y ,
of the i-node
– seriously – 1, 2, 3, etc.!
– why is it called “flat”?

• Files are created empty, and grow when extended 
through writesthrough writes

21



The tree (directory, hierarchical) file system

• A directory is a flat file of fixed-size entries
E h t i t f i d b d• Each entry consists of an i-node number and a 
file name i-node number File name

152 .
18 ..

216 my file216 my_file
4 another_file
93 oh_my_god

144 a_directory

• It’s as simple as that!
22



The “block list” portion of the i-nodeThe block list  portion of the i node
• Clearly it points to blocks in the file contents area
• Must be able to represent very small and very large• Must be able to represent very small and very large 

files.  How?
• Each inode contains 15 block pointers

– first 12 are direct blocks (i.e., 4KB blocks of file data)
– then, single, double, and triple indirect indexes

0
1 …

…

…

12
13
14

…

… …

…

23



SoSo …
• Only occupies 15 x 4B in the i-node

C t t 12 4KB 48KB fil di tl• Can get to 12 x 4KB = a 48KB file directly
– (12 direct pointers, blocks in the file contents area are 

4KB)
• Can get to 1024 x 4KB = an additional 4MB with a single• Can get to 1024 x 4KB = an additional 4MB with a single 

indirect reference
– (the 13th pointer in the i-node gets you to a 4KB block 

in the file contents area that contains 1K 4B pointers toin the file contents area that contains 1K 4B pointers to 
blocks holding file data)

• Can get to 1024 x 1024 x 4KB = an additional 4GB with a 
double indirect reference
– (the 14th pointer in the i-node gets you to a 4KB block 

in the file contents area that contains 1K 4B pointers to 
4KB blocks in the file contents area that contain 1K 4B 
pointers to blocks holding file data)pointers to blocks holding file data)

• Maximum file size is 4TB
24



File system consistencyFile system consistency

• Both i-nodes and file blocks are cached in memoryy
• The “sync” command forces memory-resident disk 

information to be written to disk
– system does a sync every few seconds

• A crash or power failure between sync’s can leave an 
inconsistent diskinconsistent disk

• You could reduce the frequency of problems by 
reducing caching, but performance would suffer big-
time

25



i-check: consistency of the flat file systemi check: consistency of the flat file system

• Is each block on exactly one list?y
– create a bit vector with as many entries as there 

are blocks
follow the free list and each i node block list– follow the free list and each i-node block list

– when a block is encountered, examine its bit
• If the bit was 0, set it to 1
• if the bit was already 1

– if the block is both in a file and on the free list, 
remove it from the free list and cross your fingersy g

– if the block is in two files, call support!
– if there are any 0’s left at the end, put those blocks 

on the free liston the free list

26



d-check: consistency of the directory file system

• Do the directories form a tree?
• Does the link count of each file equal the number of 

directories links to it?
– I will spare you the details

• uses a zero-initialized vector of counters, one 
per i-nodeper i-node

• walk the tree, then visit every i-node 

27



ProtectionProtection

• Objects: individual filesj
• Principals: owner/group/world
• Actions: read/write/execute

• This is pretty simple and rigid, but it has proven to be 
about what we can handle!about what we can handle!

28



Performance and ReliabilityPerformance and Reliability

• Disk transfer rates are improving, but much less fast than 
CPU performance

• We can use multiple disks to improve performance
– by striping files across multiple disks (placing parts of y p g p (p g p

each file on a different disk), we can use parallel I/O to 
improve access time

• Striping reduces reliabilityp g y
– 100 disks have 1/100th the MTBF (mean time between 

failures) of one disk
• So we need striping for performance but we needSo, we need striping for performance, but we need 

something to help with reliability / availability
• To improve reliability, we can add redundant data to the 

disks in addition to stripingdisks, in addition to striping

29



Refresher: What’s parity?Refresher:  What s parity?

1 0 1 1 0 1 1 0 1

• To each byte, add a bit set so that the total number of 
1’s is even1 s is even

• Any single missing bit can be reconstructed

M l h ( b d H i• More complex schemes (e.g., based on Hamming 
codes) can detect multiple bit errors and correct 
single bit errors.  Called ECC (error correcting code) 
memorymemory.

30



RAIDRAID

• A RAID is a Redundant Array of Inexpensive Disksy p
• Disks are small and cheap, so it’s easy to put lots of 

disks (10s to 100s) in one box for increased storage, 
f d il bilitperformance, and availability

• Data plus some redundant information is striped 
across the disks in some wayacross the disks in some way

• How striping is done is key to performance and 
reliability

31



RAID Level 0RAID Level 0

• RAID Level 0 is a non-redundant disk arrayy
• Files are striped across disks, no redundant info
• High read throughput
• Best write throughput (no redundant info to write)
• Any disk failure results in data loss

32



RAID Level 1RAID Level 1

• RAID Level 1 is mirrored disks
• Files are striped across half the disks
• Data is written to two places – data disks and mirror 

disks
• On failure, just use the surviving disk

2x space expansion• 2x space expansion
data disks mirror copies

33



RAID Levels 2 3 and 4RAID Levels 2, 3, and 4

• RAID levels 2, 3, and 4 use ECC (error correcting code) or 
parity disks
– E.g., each byte on the parity disk is a parity function of 

the corresponding bytes on all the other disksp g y
• A read accesses all the data disks
• A write accesses all the data disks plus the parity disk
• On disk failure, read the remaining disks plus the parity 

disk to compute the missing data

d di k i di kdata disks parity disk

34



RAID Level 5RAID Level 5

• RAID Level 5 uses block interleaved distributed parity
• Like parity scheme, but distribute the parity info (as 

well as data) over all disks
– for each block, one disk holds the parity, and thefor each block, one disk holds the parity, and the 

other disks hold the data
• Significantly better performance

it di k i t h t t– parity disk is not a hot spot
data & parity drives

0 1 2 3 PO

5 6 7 P1 4
File Block
Numbers

10 11 P2 8 9

35



RAID Level 6RAID Level 6

• Basically like RAID 5 but with replicated parity blocks y p p y
so that it can survive two disk failures.

• Useful for larger disk arrays where multiple failures 
lik lare more likely.

• RAID 10 – striping plus mirroring• RAID 10 – striping plus mirroring
• RAID 50 – RAID 5 plus mirroring
• RAID xx – something for you to invent ☺g y

36


