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Reading and ReferencesReading and References

• Reading:  Computer Organization and Design, g p g g ,
Patterson and Hennessy
– Section 5.4 Virtual Memory
– Section 5.5 A Common Framework for Memory 

Hierarchies
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Virtual Memory (and Indirection)Virtual Memory (and Indirection)

• Virtual Memory
– We’ll talk about the motivations for virtual memory
– We’ll talk about how it is implemented
– Lastly, we’ll talk about how to make virtual memory fast: 

Translation Lookaside Buffers (TLBs).a s at o oo as de u e s ( s)
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A Real ProblemA Real Problem

• What if you wanted to run a program that needs more y p g
memory than you have?

You could store the whole program on disk and– You could store the whole program on disk, and 
use memory as a cache for the data on disk.  This 
is one feature of virtual memory.

– Before virtual memory, programmers had to 
manually manage loading “overlays” (chunks of y g g y (
instructions & data) off disk before they were used.  
This is an incredibly tedious, not to mention error-
prone, process.p p
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More Real ProblemsMore Real Problems

Running multiple programs at the same time brings up more problems.

1. Even if each program fits in memory, running 10 programs might 
not.
– This is really the same problem as on the previous slide.y p p

1. Multiple programs may want to store something at the same 
address.

i e what if both Program A and B want to use address– i.e., what if both Program A and B want to use address 
0x10000000 as the base of their stack?

– It is impractical (if not impossible) to compile every pair of 
programs that could get executed together to use distinct sets 
of addressesof addresses.

2. How do we protect one program’s data from being read or written 
by another program?
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The Big IdeaThe Big Idea

• Separate program notion of memory addresses from p p g y
actual physical memory locations
– Program memory = virtual addresses
– Physical memory = real addresses
– Use hardware to map between the two
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Memory Mappingy pp g
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IndirectionIndirection

• “Any problem in CS can be solved by adding a level y p y g
of indirection”

• Without Indirection
Name Thing

Name Thing

• With Indirection Thing

8



IndirectionIndirection
• Indirection: Indirection is the ability to reference 

thi i f t i i t dsomething using a name, reference, or container instead 
the value itself.  A flexible mapping between a name and 
a thing allows changing the thing without notifying g g g g y g
holders of the name.
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9



Virtual MemoryVirtual Memory
• We translate “virtual addresses” used by the program to 

“physical addresses” that represent places in the machine’sphysical addresses  that represent places in the machine s 
“physical” memory.
– The word “translate” denotes a level of indirection 
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Virtual MemoryVirtual Memory
• Because different processes will have different mappings from 

virtual to physical addresses, two programs can freely use thevirtual to physical addresses, two programs can freely use the 
same virtual address.

• By allocating distinct regions of physical memory to A and B, 
they are prevented from reading/writing each others data.they are prevented from reading/writing each others data. 
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Caching revisitedCaching revisited

• Once the translation infrastructure is in place, the problem boils 
down to cachingdown to caching. 
– We want the size of disk, but the performance of memory.

• The design of virtual memory systems is really motivated by theThe design of virtual memory systems is really motivated by the 
high cost of accessing disk.
– While memory latency is ~100 times that of cache, disk 

latency is ~100,000 times that of memory.

• Hence, we try to minimize the miss rate:
– VM “pages” are much larger than cache blocks.  Why?

A fully associative policy is used– A fully associative policy is used.  
• With approximate LRU

• Should a write-through or write-back policy be used?Should a write through or write back policy be used?
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Finding the right pageFinding the right page

• If it is fully associative, how to we find the right page y , g p g
without scanning all of memory?
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Finding the right pageFinding the right page
• If it is fully associative, how do we find the right page without scanning 

all of memory?all of memory?
– Use an index, just like you would for a book.

Our index happens to be called the page table:• Our index happens to be called the page table:
– Each process has a separate page table

• A “page table register” points to the current process’s page 
tabletable

– The page table is indexed with the virtual page number (VPN)
• The VPN is all of the bits that aren’t part of the page offset.

Each entry contains a valid bit and a physical page number (PPN)– Each entry contains a valid bit, and a physical page number (PPN)
• The PPN is concatenated with the page offset to get the 

physical address
No tag is needed because the index is the full VPN– No tag is needed because the index is the full VPN.

14



Page Table picturePage Table picture
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How big is the page table?How big is the page table?

• From the previous slide:p
– Virtual page number is 20 bits.
– Physical page number is 18 bits + valid bit -> 

round up to 32 bits.
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Dealing with large page tablesDealing with large page tables
• Multi-level page tables

– “Any problem in CS can be solved by adding a level of indirection”Any problem in CS can be solved by adding a level of indirection
– or two…

Page Table 
B P i t

2nd
A 3 l l blBase Pointer 1st 3rd A 3-level page table

VPN1    VPN2     VPN3   offset

PPN
PPN         offset

• Since most processes don’t use the whole address space, you don’t 
ll t th t bl th t ’t d dallocate the tables that aren’t needed
– Also, the 2nd and 3rd level page tables can be “paged” to disk.
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Waitaminute!Waitaminute!

• We’ve just replaced every memory access MEM[addr] with:

MEM[MEM[MEM[MEM[PTBR + VPN1<<2] + VPN2<<2] + 

VPN3<<2] + offset]
– i.e., 4 memory accesses

• And we haven’t talked about the bad case yet (i.e., page y ( , p g
faults)…

“Any problem in CS can be solved by adding a level of indirection”y p y g
– except too many levels of indirection…

• How do we deal with too many levels of indirection?y
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Caching TranslationsCaching Translations
• Virtual to Physical translations are cached in a Translation Lookaside

Buffer (TLB).
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What about a TLB miss?What about a TLB miss?

• If we miss in the TLB, we need to “walk the page table”
– In MIPS, an exception is raised and software fills the TLB

– In x86, a “hardware page table walker” fills the TLB, p g

• What if the page is not in memory?
This situation is called a page fault– This situation is called a page fault.

– The operating system will have to request the page from 
disk.
It ill d t l t t l– It will need to select a page to replace.

• The O/S tries to approximate LRU (coming next)
– The replaced page will need to be written back if dirty.
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Memory ProtectionMemory Protection

• In order to prevent one process from reading/writing p p g g
another process’s memory, we must ensure that a 
process cannot change its virtual-to-physical translations.

• Typically this is done by:Typically, this is done by:
– Having two processor modes: user & kernel.

• Only the O/S runs in kernel mode
– Only allowing kernel mode to write to the virtual 

memory state, e.g.,
• The page tableThe page table
• The page table base pointer
• The TLB
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Sharing MemorySharing Memory
• Paged virtual memory enables sharing at the granularity of a 

page, by allowing two page tables to point to the same physical 
addresses.

• For example, if you run two copies of a program, the O/S will 
share the code pages between the programs.
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SummarySummary

• Virtual memory is great:
– It means that we don’t have to manage our own memory.
– It allows different programs to use the same memory.
– It provides protect between different processes.
– It allows controlled sharing between processes (albeit 

somewhat inflexibly).
• The key technique is indirection:

– Yet another classic CS trick you’ve seen in this class.
– Many problems can be solved with indirection.

• Caching made a few appearances, too:
– Virtual memory enables using physical memory as a cache 

for disk.
– We used caching (in the form of the Translation Lookaside

B ff ) t k Vi t l M ’ i di ti f tBuffer) to make Virtual Memory’s indirection fast.
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