
CSE 410
Computer Systems

Hal Perkins
Spring 2010

L t 20 Vi t l MLecture 20 – Virtual Memory

Reading and ReferencesReading and References

• Reading: Computer Organization and Design, g p g g ,
Patterson and Hennessy
– Section 5.4 Virtual Memory
– Section 5.5 A Common Framework for Memory

Hierarchies

2

Virtual Memory (and Indirection)Virtual Memory (and Indirection)

• Virtual Memory
– We’ll talk about the motivations for virtual memory
– We’ll talk about how it is implemented
– Lastly, we’ll talk about how to make virtual memory fast:

Translation Lookaside Buffers (TLBs).a s at o oo as de u e s (s)

3

A Real ProblemA Real Problem

• What if you wanted to run a program that needs more y p g
memory than you have?

You could store the whole program on disk and– You could store the whole program on disk, and
use memory as a cache for the data on disk. This
is one feature of virtual memory.

– Before virtual memory, programmers had to
manually manage loading “overlays” (chunks of y g g y (
instructions & data) off disk before they were used.
This is an incredibly tedious, not to mention error-
prone, process.p p

4

More Real ProblemsMore Real Problems

Running multiple programs at the same time brings up more problems.

1. Even if each program fits in memory, running 10 programs might
not.
– This is really the same problem as on the previous slide.y p p

1. Multiple programs may want to store something at the same
address.

i e what if both Program A and B want to use address– i.e., what if both Program A and B want to use address
0x10000000 as the base of their stack?

– It is impractical (if not impossible) to compile every pair of
programs that could get executed together to use distinct sets
of addressesof addresses.

2. How do we protect one program’s data from being read or written
by another program?

5

The Big IdeaThe Big Idea

• Separate program notion of memory addresses from p p g y
actual physical memory locations
– Program memory = virtual addresses
– Physical memory = real addresses
– Use hardware to map between the two

6

Memory Mappingy pp g

program
dd

physical
dd

memory
i

heap

stack
addresses addressesmapping

program
physical

memory
stack

heap
program

stack

heap
program

stack

disk

7

IndirectionIndirection

• “Any problem in CS can be solved by adding a level y p y g
of indirection”

• Without Indirection
Name Thing

Name Thing

• With Indirection Thing

8

IndirectionIndirection
• Indirection: Indirection is the ability to reference

thi i f t i i t dsomething using a name, reference, or container instead
the value itself. A flexible mapping between a name and
a thing allows changing the thing without notifying g g g g y g
holders of the name.

Name
Thing

• Without Indirection
Thing

• With Indirection

Name Thing

ThingThing

9

Virtual MemoryVirtual Memory
• We translate “virtual addresses” used by the program to

“physical addresses” that represent places in the machine’sphysical addresses that represent places in the machine s
“physical” memory.
– The word “translate” denotes a level of indirection

dr
es

s

Physical
Memory

tu
al

 A
dd A virtual address can be

mapped to either physical

V
irt

Disk
memory or disk.

10

Virtual MemoryVirtual Memory
• Because different processes will have different mappings from

virtual to physical addresses, two programs can freely use thevirtual to physical addresses, two programs can freely use the
same virtual address.

• By allocating distinct regions of physical memory to A and B,
they are prevented from reading/writing each others data.they are prevented from reading/writing each others data.

re
ss

Physical
Memory V
irt

Program A Program B

rtu
al

 A
dd

r tual A
ddre

V
ir

Disk

ess

11

Caching revisitedCaching revisited

• Once the translation infrastructure is in place, the problem boils
down to cachingdown to caching.
– We want the size of disk, but the performance of memory.

• The design of virtual memory systems is really motivated by theThe design of virtual memory systems is really motivated by the
high cost of accessing disk.
– While memory latency is ~100 times that of cache, disk

latency is ~100,000 times that of memory.

• Hence, we try to minimize the miss rate:
– VM “pages” are much larger than cache blocks. Why?

A fully associative policy is used– A fully associative policy is used.
• With approximate LRU

• Should a write-through or write-back policy be used?Should a write through or write back policy be used?

12

Finding the right pageFinding the right page

• If it is fully associative, how to we find the right page y , g p g
without scanning all of memory?

13

Finding the right pageFinding the right page
• If it is fully associative, how do we find the right page without scanning

all of memory?all of memory?
– Use an index, just like you would for a book.

Our index happens to be called the page table:• Our index happens to be called the page table:
– Each process has a separate page table

• A “page table register” points to the current process’s page
tabletable

– The page table is indexed with the virtual page number (VPN)
• The VPN is all of the bits that aren’t part of the page offset.

Each entry contains a valid bit and a physical page number (PPN)– Each entry contains a valid bit, and a physical page number (PPN)
• The PPN is concatenated with the page offset to get the

physical address
No tag is needed because the index is the full VPN– No tag is needed because the index is the full VPN.

14

Page Table picturePage Table picture

Virtual address

Page table register

Page offsetVirtual page number

Virtual address

20 12

31 30 29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

Physical page numberValid

Page table

If 0 then page is not�
present in memory

18

29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

Page offsetPhysical page number

Physical address
15

How big is the page table?How big is the page table?

• From the previous slide:p
– Virtual page number is 20 bits.
– Physical page number is 18 bits + valid bit ->

round up to 32 bits.

16

Dealing with large page tablesDealing with large page tables
• Multi-level page tables

– “Any problem in CS can be solved by adding a level of indirection”Any problem in CS can be solved by adding a level of indirection
– or two…

Page Table
B P i t

2nd
A 3 l l blBase Pointer 1st 3rd A 3-level page table

VPN1 VPN2 VPN3 offset

PPN
PPN offset

• Since most processes don’t use the whole address space, you don’t
ll t th t bl th t ’t d dallocate the tables that aren’t needed
– Also, the 2nd and 3rd level page tables can be “paged” to disk.

17

Waitaminute!Waitaminute!

• We’ve just replaced every memory access MEM[addr] with:

MEM[MEM[MEM[MEM[PTBR + VPN1<<2] + VPN2<<2] +

VPN3<<2] + offset]
– i.e., 4 memory accesses

• And we haven’t talked about the bad case yet (i.e., page y (, p g
faults)…

“Any problem in CS can be solved by adding a level of indirection”y p y g
– except too many levels of indirection…

• How do we deal with too many levels of indirection?y

18

Caching TranslationsCaching Translations
• Virtual to Physical translations are cached in a Translation Lookaside

Buffer (TLB).
Virtual address

31 30 29 15 14 13 12 11 10 9 8 3 2 1 0()
Page offsetVirtual page number

Physical page numberValid

1220

Dirty Tag

TLB

20

TLB hit

�

�

Page offset

16 14

Cache index

2

Byte�
offset

Physical page number

Physical address tag
Physical address

Valid Tag Data

Cache

32

DataCache hit 19

What about a TLB miss?What about a TLB miss?

• If we miss in the TLB, we need to “walk the page table”
– In MIPS, an exception is raised and software fills the TLB

– In x86, a “hardware page table walker” fills the TLB, p g

• What if the page is not in memory?
This situation is called a page fault– This situation is called a page fault.

– The operating system will have to request the page from
disk.
It ill d t l t t l– It will need to select a page to replace.

• The O/S tries to approximate LRU (coming next)
– The replaced page will need to be written back if dirty.

20

Memory ProtectionMemory Protection

• In order to prevent one process from reading/writing p p g g
another process’s memory, we must ensure that a
process cannot change its virtual-to-physical translations.

• Typically this is done by:Typically, this is done by:
– Having two processor modes: user & kernel.

• Only the O/S runs in kernel mode
– Only allowing kernel mode to write to the virtual

memory state, e.g.,
• The page tableThe page table
• The page table base pointer
• The TLB

21

Sharing MemorySharing Memory
• Paged virtual memory enables sharing at the granularity of a

page, by allowing two page tables to point to the same physical
addresses.

• For example, if you run two copies of a program, the O/S will
share the code pages between the programs.

es
s

Physical
Memory V

i

Program A Program B

rtu
al

 A
dd

re

irtual A
ddre

V
ir

Disk

ess

22

SummarySummary

• Virtual memory is great:
– It means that we don’t have to manage our own memory.
– It allows different programs to use the same memory.
– It provides protect between different processes.
– It allows controlled sharing between processes (albeit

somewhat inflexibly).
• The key technique is indirection:

– Yet another classic CS trick you’ve seen in this class.
– Many problems can be solved with indirection.

• Caching made a few appearances, too:
– Virtual memory enables using physical memory as a cache

for disk.
– We used caching (in the form of the Translation Lookaside

B ff) t k Vi t l M ’ i di ti f tBuffer) to make Virtual Memory’s indirection fast.

23

