
CSE 410
Computer Systems

Hal Perkins
Spring 2010

L t 19 D dl kLecture 19 – Deadlock

Readings and ReferencesReadings and References

• Reading g
– Chapter 7, Operating System Concepts, Silberschatz,

Galvin, and Gagne

2

(Is Google the greatest, or what?)
3

DefinitionDefinition

• A thread is deadlocked when it’s waiting for an event that
can never occur
– I’m waiting for you to clear the intersection, so I can

proceed
• but you can’t move until he moves and he can’t• but you can t move until he moves, and he can t

move until she moves, and she can’t move until I
move

– thread A is in critical section 1, waiting for access tothread A is in critical section 1, waiting for access to
critical section 2; thread B is in critical section 2,
waiting for access to critical section 1

– I’m trying to book a vacation package to Tahiti – air
t t ti d t t ti h t l id t itransportation, ground transportation, hotel, side-trips.
It’s all-or-nothing – one high-level transaction – with the
four databases locked in that order. You’re trying to do
the same thing in the opposite order.t e sa e t g t e oppos te o de

4

Resource graphResource graph

• A deadlock exists if there is an irreducible cycle in the
h (h th b)resource graph (such as the one above)

5

Graph reductionGraph reduction

• A graph can be reduced by a thread if all of that g p y
thread’s requests can be granted
– in this case, the thread eventually will terminate –

ll f d ll (ll ti) t itall resources are freed – all arcs (allocations) to it
in the graph are deleted

• Miscellaneous theorems (Holt, Havender):Miscellaneous theorems (Holt, Havender):
– There are no deadlocked threads iff the graph is

completely reducible
– The order of reductions is irrelevant

(D t il ith lti l it)

6

• (Detail: resources with multiple units)

Resource allocation graph with no cycleResource allocation graph with no cycle

What would cause a
deadlock?

7Silberschatz, Galvin and Gagne ©2002

Resource allocation graph with a deadlockResource allocation graph with a deadlock

8Silberschatz, Galvin and Gagne ©2002

Resource allocation graph with a cycle
b t d dl kbut no deadlock

9Silberschatz, Galvin and Gagne ©2002

Necessary Conditions for DeadlockNecessary Conditions for Deadlock

• Mutual Exclusion
– The resource can’t be shared

• Hold and Wait
– Task holds one resource while waiting for anotherTask holds one resource while waiting for another

• No Preemption
– If a task has a resource, it cannot be forced to give it up

Ci l W it• Circular Wait
– A waits for B, B for C, C for D, D for A

CA B

D
10

Dealing with DeadlockDealing with Deadlock

• Deadlock Prevention
– Ensure statically that deadlock is impossible

• Deadlock Avoidance
– Ensure dynamically that deadlock is impossible

• Deadlock Detection and Recovery
– Allow deadlock to occur, but notice when it does

and try to recover
• Ignore the ProblemIgnore the Problem

– Let the operator untangle it, that's what they're
paid for

11

Deadlock PreventionDeadlock Prevention

• There are four necessary conditions for deadlocky
• Take any one of them away and deadlock is

impossible
• Let’s attack deadlock by

– examining each of the conditions
considering what would happen if we threw it out– considering what would happen if we threw it out

12

Condition: Mutual ExclusionCondition: Mutual Exclusion

• Usually can't eliminate this conditiony
– some resources are intrinsically non-sharable

• Examples include printer, write access to a file or
record, entry into a section of code

• However, you can often mitigate this by adding a
layer of abstractionlayer of abstraction
– For example, write to a queue of jobs for a shared

resource instead of locking the resource to write

13

Condition: Hold and WaitCondition: Hold and Wait

• Eliminate partial acquisition of resourcesp q
• Task must acquire all the resources it needs before it

does anything
– if it can’t get them all, then it gets none

• Issue: Resource utilization may be low
If you need P for a long time and Q only at the– If you need P for a long time and Q only at the
end, you still have to hold Q’s lock the whole time

• Issue: Starvation pronep
– May have to wait indefinitely before popular

resources are all available at the same time

14

Condition: No PreemptionCondition: No Preemption

• Allow preemptionp p
– If a process asks for a resource not currently available,

block it and take away all of its other resources
Add the preempted resources to the list of resources– Add the preempted resources to the list of resources
the process is waiting for

• This strategy works for some resources:
– CPU state (contents of registers can be spilled to

memory)
– memory (can be spilled to disk)memory (can be spilled to disk)

• But not for others:
– printer – let everyone print and sort the pages later?

15

Condition: Circular WaitCondition: Circular Wait

• To attack the circular wait condition:
– Assign each resource a priority
– Make processes acquire resources in priority

orderorder
• Two processes need the printer and the scanner,

both must acquire the printer (higher priority) before
ththe scanner

• This is a common form of deadlock prevention
• A problem: sometimes forced to relinquish a resourceA problem: sometimes forced to relinquish a resource

that you thought you had locked up
• A problem: sometimes (often?) impossible to assign

a global total order on resources/prioritiesa global, total order on resources/priorities

16

Deadlock AvoidanceDeadlock Avoidance

• Deadlock prevention is often too strictp
– low device utilization
– reduced system throughput

• If the OS had more information, it could do more
sophisticated things to avoid deadlock and keep the
system in a safe statesystem in a safe state
– “If” is a little word, but it packs a big punch
– predicting all needed resources a priori is hardp g p

17

The Banker’s AlgorithmThe Banker s Algorithm
• Idea: know what each

i ht k fprocess might ask for
• Only make allocations that

leave the system in a safeleave the system in a safe
state

• Inefficient
unsafe

deadlock

safe

unsafe

Resource allocation
t tstate space

18

Deadlock DetectionDeadlock Detection

• Build a wait-for graph and A waits for B
B waits for Dperiodically look for cycles,

to find the circular wait
condition

B waits for D
D waits for A

deadlock!

condition
• The wait-for graph contains:

d di t

E

– nodes, corresponding to
tasks

– directed edges,
CA B

g ,
corresponding to a resource
held by one task and desired
by the other Dby the other D

19

Deadlock RecoveryDeadlock Recovery

• Once you’ve discovered deadlock, what next?y ,
• Terminate one of the tasks to stop circular wait?

– Task will likely have to start over from scratch
– Which task should you choose?

• Take a resource away from a task?
?– Again, which task should you choose?

– How can you roll back the task to the state before
it had the coveted resource?it had the coveted resource?

– Make sure you don’t keep on preempting from the
same task: avoid starvation

20

Ignoring DeadlockIgnoring Deadlock

• Not always a bad policy for operating systemsy p y p g y
• The mechanisms outlined previously for handling

deadlock may be expensive
– if the alternative is to have a forced reboot once a

year, that might be acceptable
• However for thread deadlocks your users may not• However, for thread deadlocks, your users may not

be quite so tolerant
– “the program only locks up once in a while”

21

Current practiceCurrent practice

• Microsoft SQL Server
– “The SQL Server Database Engine automatically

detects deadlock cycles within SQL Server. The
Database Engine chooses one of the sessions as a
deadlock victim and the current transaction is
terminated with an error to break the deadlock.”

• Oracle
– As Microsoft SQL Server, plus “Multitable deadlocks

can usually be avoided if transactions accessing the
same tables lock those tables in the same order... For
example, all application developers might follow the
rule that when both a master and detail table are
updated, the master table is locked first and then the
detail table ”detail table.

22

More current practiceMore current practice….
• Windows internals (Linux no different)

“ th NT k l hit t i d dl k i fi ld– “… the NT kernel architecture is a deadlock minefield.
With the multi-threaded re-entrant kernel there is plenty
of deadlock potential.”
“L k d i i t i th d NT i i ll– “Lock ordering is great in theory, and NT was originally
designed with mutex levels, but they had to be
abandoned. Inside the NT kernel there is a lot of
interaction between memory management the cacheinteraction between memory management, the cache
manager, and the file systems, and plenty of situations
where memory management (maybe under the guise
of its modified page writer) acquires its lock and thenof its modified page writer) acquires its lock and then
calls the cache manager. This happens while the file
system calls the cache manager to fill the cache which
in turn goes through the memory manager to fault in its g g y g
page. And the list goes on.”

23

SummarySummary

• Deadlock is bad!

• We can deal with it either statically (prevention) or
d i ll (id d d t ti)dynamically (avoidance and detection)

• In practice you’ll encounter lock ordering periodic• In practice, you ll encounter lock ordering, periodic
deadlock detection/correction, and minefields

24

