
CSE 410
Computer Systems

Hal Perkins
Spring 2010

L t 18 S h i tiLecture 18 – Synchronization



Readings and ReferencesReadings and References

• Reading g
– Chapter 6, Operating System Concepts, 

Silberschatz, Galvin, and Gagne.  Read 6.1, 6.2, 
6 3 ( ki ) 6 4 6 5 6 6 ( ki ) 6 76.3 (skim), 6.4-6.5, 6.6 (skim), 6.7
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SynchronizationSynchronization

• Threads cooperate in multithreaded programs
– to share resources, access shared data structures

• e.g., threads accessing a memory cache in a web server
– also, to coordinate their execution

• e.g., a disk reader thread hands off blocks to a network writer thread 
through a circular buffer

disk 
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writer 
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thread
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SynchronizationSynchronization

• For correctness, we have to control this cooperation
– must assume threads interleave executions arbitrarily and at 

different rates
• Modern OS’s are preemptive
• scheduling is not under application writers’ control (except for real-time, 

but that’s not of interest here).

• We control cooperation using synchronizationWe control cooperation using synchronization
– enables us to restrict the interleaving of executions

• Note: this also applies to processes not just threads• Note: this also applies to processes, not just threads
– (I may never say “process” again!  Then again, I might say it a lot.)

• It also applies across machines in a distributed system• It also applies across machines in a distributed system
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Shared resourcesShared resources

• We’ll focus on coordinating access to shared g
resources
– basic problem:

• two concurrent threads are accessing a shared 
variable

• if the variable is read/modified/written by both• if the variable is read/modified/written by both 
threads, then access to the variable must be 
controlled

• otherwise, unexpected results may occur
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The classic exampleThe classic example

• Suppose we have to implement a function to pp p
withdraw money from a bank account:
int withdraw(account, amount) {
int balance = get_balance(account);
b l tbalance -= amount;
put_balance(account, balance);
return balance;

}

• Now suppose that you and your S.O. share a bank 
account with a balance of $100.00
– what happens if you both go to separate ATM– what happens if you both go to separate ATM 

machines, and simultaneously withdraw $10.00 
from the account?
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Your Bank’s ComputerYour Bank s Computer

• Represent the situation by creating a separate thread p y g p
for each person to do the withdrawals
– have both threads run on the same bank mainframe:

int withdraw(account, amount) {

int balance = get_balance(account);

balance -= amount;

int withdraw(account, amount) {

int balance = get_balance(account);

balance -= amount;balance  amount;

put_balance(account, balance);

return balance;

}

balance  amount;

put_balance(account, balance);

return balance;

}
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Interleaved schedulesInterleaved schedules

• The problem is that the execution of the two threads 
b i t l d i ti h d lican be interleaved, assuming preemptive scheduling:

balance = get_balance(account);

balance -= amount;
t t it h

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

Execution sequence
as seen by CPU

context switch

context switch

• What’s the account balance after this sequence?
h ’ h th b k ?

put_balance(account, balance);

– who’s happy, the bank or you? 
• How often is this unfortunate sequence likely to 

occur?
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The crux of the matterThe crux of the matter

• The problem is that two concurrent threads (or processes) 
access a shared resource (account) without any 
synchronization
– creates a race condition

• output is non-deterministic, depends on timing
• We need mechanisms for controlling access to shared 

resources in the face of concurrencyy
– so we can reason about the operation of programs

• essentially, re-introducing determinism
• Synchronization is necessary for any shared data• Synchronization is necessary for any shared data 

structure
– buffers, queues, lists, hash tables, scalars, …
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What resources are shared?What resources are shared?

• Local variables are not shared
– refer to data on the stack, each thread has its own 

stack
– never pass/share/store a pointer to a local variable 

on another thread’s stack!
• Global variables are shared• Global variables are shared

– stored in the static data segment, accessible by 
any thread

• Dynamic objects are shared
– stored in the heap, shared if you can name it
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Mutual exclusionMutual exclusion

• We want to use mutual exclusion to synchronize access to 
shared resources

• Mutual exclusion makes reasoning about program 
behavior easier
– making reasoning easier leads to fewer bugs

• Code that uses mutual exclusion to synchronize its 
execution is called a critical section
– only one thread at a time can execute in the critical 

section
– all other threads are forced to wait on entryall other threads are forced to wait on entry
– when a thread leaves a critical section, another can 

enter
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Critical section requirementsCritical section requirements

• Critical sections have the following requirements
– mutual exclusion

• at most one thread is in the critical section
– progress

• if thread T is outside the critical section, then T cannot 
prevent thread S from entering the critical section

– bounded waiting (no starvation)
• if thread T is waiting on the critical section, then T will 

eventually enter the critical section
– assumes threads eventually leave critical sections

f i ?• vs. fairness?
– performance

• the overhead of entering and exiting the critical section is 
small with respect to the work being done within itsmall with respect to the work being done within it
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Mechanisms for building critical sectionsMechanisms for building critical sections

• Locks
– very primitive, minimal semantics; used to build others

• Semaphores
– basic, easy to get the hang of, hard to program with

• Monitors
– high level, requires language support, implicit 

operations
– easy (easier) to program with; Java synchronized() as 

an example
• Messages

i l d l f i ti d h i ti– simple model of communication and synchronization 
based on (atomic) transfer of data across a channel

– direct application to distributed systems

• We will survey the first three
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LocksLocks

• A lock is an object (in memory) that provides the 
following two operations:
– acquire(): a thread calls this before entering a critical section
– release(): a thread calls this after leaving a critical sectionrelease(): a thread calls this after leaving a critical section

• Threads pair up calls to acquire() and release()
– between acquire()and release(), the thread holds the lock
– acquire() does not return until the caller holds the lock

• at most one thread can hold a lock at a time (usually)
– so: what can happen if the calls aren’t paired?

• Two basic flavors of locks
– spinlock

bl ki ( k “ t ”)– blocking  (a.k.a. “mutex”)
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Using locksUsing locks

int withdraw(account, amount) {

acquire(lock)

balance = get balance(account);

acquire(lock);

balance = get_balance(account);

balance -= amount;

b l ( b l )

balance  get_balance(account);

balance -= amount;

put balance(account balance);

acquire(lock)

rit
ic

al
ec

tio
n

put_balance(account, balance);

release(lock);

return balance;

}

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);
release(lock);

cr se

Wh t h h t i t i th l k?

put_balance(account, balance);

release(lock);

• What happens when green tries to acquire the lock?
• Why is the “return” outside the critical section?

– is this ok?is this ok?
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SpinlocksSpinlocks

• How do we implement locks?  Here’s one attempt:p p

struct lock {

int held = 0;

}}

void acquire(lock) {

while (lock->held);

lock->held = 1;

}

the caller “busy-waits”,
or spins, for lock to be
released ⇒ hence spinlock

}

void release(lock) {

lock->held = 0;

}

• Why doesn’t this work?
– where is the race condition?where is the race condition?
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Implementing locks (cont )Implementing locks (cont.)

• Problem is that implementation of locks has critical 
ti t !sections, too!

– the acquire/release must be atomic
• atomic == executes as though it could not be 

interruptedinterrupted
• code that executes “all or nothing”

• Need help from the hardware
atomic instr ctions– atomic instructions

• test-and-set, compare-and-swap, …
• see text for examples

di bl / bl i t t– disable/reenable interrupts
• to prevent context switches
• crude – and can only be done in the kernel
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Summary so farSummary so far

• Synchronization can be provided by locks, semaphores, 
monitors, messages …

• Locks are the lowest-level mechanism
– very primitive in terms of semantics – error-proney p p
– implemented by spin-waiting (crude) or by disabling 

interrupts (also crude, and can only be done in the 
kernel))

• In our next exciting episode …
– semaphores are a slightly higher level abstraction

• less crude implementation too• less crude implementation too
– monitors are significantly higher level

• utilize programming language support to reduce 
errors
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SemaphoresSemaphores

• Semaphore = a synchronization primitive
– higher level of abstraction than locks
– invented by Dijkstra in 1968, as part of the THE

operating systemp g y
• A semaphore is:

– a variable that is manipulated through two operations, 
P and V (Dutch for “test” and “increment”)P and V (Dutch for test  and increment )

• P(sem) (wait)
– block until sem > 0, then subtract 1 from sem and 

proceedproceed
• V(sem) (signal)

– add 1 to sem
• Do these operations atomically• Do these operations atomically
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Blocking in semaphoresBlocking in semaphores
• Each semaphore has an associated queue of threads

h P( ) i ll d b th d– when P(sem) is called by a thread,
• if sem was “available” (>0), decrement sem and let thread 

continue
if sem was “unavailable” (< 0) place thread on associated• if sem was “unavailable” (<=0), place thread on associated 
queue; dispatch some other runnable thread

– when V(sem) is called by a thread
• if thread(s) are waiting on the associated queue unblock one• if thread(s) are waiting on the associated queue, unblock one

– place it on the ready queue
– might as well let the “V-ing” thread continue execution
– or not, depending on priority, p g p y

• otherwise (when no threads are waiting on the sem), 
increment sem

– the signal is “remembered” for next time P(sem) is called
• Semaphores thus have history
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Abstract implementationAbstract implementation

– P/wait(sem)
• acquire “real” mutual exclusion

– if sem is “available” (>0), decrement sem; release “real” 
mutual exclusion; let thread continue
th i l th d i t d l “ l”– otherwise, place thread on associated queue; release “real” 

mutual exclusion; run some other thread
– V/signal(sem)

i “ l” t l l i• acquire “real” mutual exclusion
– if thread(s) are waiting on the associated queue, unblock one 

(place it on the ready queue)
if no threads are on the queue sem is incremented– if no threads are on the queue, sem is incremented

» the signal is “remembered” for next time P(sem) is called
• release “real” mutual exclusion

[th “V i ” th d ti ti i t d]• [the “V-ing” thread continues execution or is preempted]
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Two types of semaphoresTwo types of semaphores

• Binary semaphore (aka mutex semaphore)
– sem is initialized to 1
– guarantees mutually exclusive access to resource 

(e.g., a critical section of code)
l th d/ ll d t t ti– only one thread/process allowed entry at a time

• Counting semaphore
sem is initiali ed to N– sem is initialized to N

• N = number of units available
– represents resources with many (identical) units 

availableavailable
– allows threads to enter as long as more units are 

available
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UsageUsage

• From the programmer’s perspective, P and V on a binary 
semaphore are just like Acquire and Release on a lock

P(sem)...
do whatever stuff requires mutual exclusion; could conceivably
be a lot of code...

V(sem)V(sem)
– same lack of programming language support for correct usage

• Important differences in the underlying implementation howeverImportant differences in the underlying implementation, however
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Semaphores vs LocksSemaphores vs. Locks

• Threads that are blocked by the semaphore P y p
operation are placed on queues, rather than busy-
waiting

• Busy-waiting may be used for the “real” mutual 
exclusion required to implement P and V
– but these are very short critical sections – totally 

independent of program logic
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Problems with semaphores (and locks)Problems with semaphores (and locks)

• They can be used to solve any of the traditional 
h i ti bl b tsynchronization problems, but:

– semaphores are essentially shared global variables
• can be accessed from anywhere (bad software 

engineering)engineering)
– there is no connection between the semaphore and the 

data being controlled by it
– used for both critical sections (mutual exclusion) and– used for both critical sections (mutual exclusion) and 

for coordination (scheduling)
– no control over their use, no guarantee of proper usage

• Thus, they are prone to bugs
– another (better?) approach: use programming 

language support
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One More Approach: MonitorsOne More Approach: Monitors
• A monitor is a programming language construct that supports 

controlled access to shared datacontrolled access to shared data
– synchronization code is added by the compiler

• A monitor encapsulates:
– shared data structures
– procedures that operate on the shared data
– synchronization between concurrent threads that invoke those 

proceduresprocedures

• Data can only be accessed from within the monitor, using the 
provided procedures

protects the data from unstructured access– protects the data from unstructured access

• Addresses the key usability issues that arise with semaphores
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A monitorA monitor

shared data

waiting queue of threads 
trying to enter the monitor

Proc A
y g

Proc B

Proc C

operations (methods)at most one thread 
in monitor at a 

Proc C

time
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Monitor facilitiesMonitor facilities

• “Automatic” mutual exclusion
– only one thread can be executing inside at any 

time
• thus synchronization is implicitly associated• thus, synchronization is implicitly associated 

with the monitor – it “comes for free” 
– if a second thread tries to execute a monitor 

d it bl k til th fi t h l ft thprocedure, it blocks until the first has left the 
monitor

• more restrictive than semaphores
• but easier to use (most of the time)

• But there’s a problem• But, there s a problem…
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Example: Bounded Buffer ScenarioExample: Bounded Buffer Scenario

Produce()

Consume()

• Buffer is empty
• Now what?
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Example: Bounded Buffer ScenarioExample: Bounded Buffer Scenario

Produce()

Consume()

• Buffer is full
• Now what?
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Condition variablesCondition variables

• A place to wait; sometimes called a rendezvous point
“R i d” f i• “Required” for monitors
– So useful they’re often provided even when monitors aren’t 

available
• Three operations on condition variablesThree operations on condition variables

– wait(c)
• release monitor lock, so somebody else can get in
• wait for somebody else to signal conditiony g
• thus, condition variables have associated wait queues

– signal(c)
• wake up at most one waiting thread
• if no waiting threads, signal is lost

– this is different than semaphores: no history!
– broadcast(c)

• wake up all waiting threads• wake up all waiting threads
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A monitor (including CVs)

wait queue for cond var

A monitor (including CVs)

shared data

wait queue for cond. var. 
buff_empty

waiting queue of threads 
trying to enter the monitor

Proc A
y g

Proc B

Proc C

operations (methods)at most one thread 
in monitor at a 

Proc C

time
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Bounded buffer using (Hoare) monitorsBounded buffer using (Hoare) monitors

Monitor bounded_buffer {
b ff [N]buffer resources[N];
condition not_full, not_empty;

produce(resource x) {
if (array “resources” is full)

wait(not_full);
insert “x” in array “resources”
signal(not empty);signal(not_empty);

}

consume(resource *x) {
if (array “resources” is empty)if (array resources  is empty)

wait(not_empty);
*x = get resource from array “resources”
signal(not_full);

}
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Monitor SummaryMonitor Summary

• Language supports monitors
• Compiler understands them

– compiler inserts calls to runtime routines for
• monitor entry
• monitor exit
• signal
• Wait

– Language/object encapsulation ensures correctness
• Sometimes! With conditions you STILL need to 

think about synchronization and state of monitor 
i i t it/ i linvariants on wait/signal

• Runtime system implements these routines
– moves threads on and off queues
– ensures mutual exclusion!
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