CSE 410
Computer Systems

Hal Perkins
Spring 2010
Lecture 18 — Synchronization

Readings and References

e Reading

— Chapter 6, Operating System Concepts,
Silberschatz, Galvin, and Gagne. Read 6.1, 6.2,
6.3 (skim), 6.4-6.5, 6.6 (skim), 6.7

Synchronization

 Threads cooperate in multithreaded programs

— to share resources, access shared data structures
* e.g., threads accessing a memory cache in a web server

— also, to coordinate their execution
* e.g., adisk reader thread hands off blocks to a network writer thread

through a circular buffer
m

N m writer
" reader thread
. thread
circular

buffer

Synchronization

For correctness, we have to control this cooperation

— must assume threads interleave executions arbitrarily and at
different rates
 Modern OS'’s are preemptive

» scheduling is not under application writers’ control (except for real-time,
but that's not of interest here).

We control cooperation using synchronization
— enables us to restrict the interleaving of executions

Note: this also applies to processes, not just threads
— (I may never say “process” again! Then again, | might say it a lot.)

It also applies across machines in a distributed system

Shared resources

« We'll focus on coordinating access to shared
resources

— basic problem:

e two concurrent threads are accessing a shared
variable

e If the variable is read/modified/written by both
threads, then access to the variable must be
controlled

« otherwise, unexpected results may occur

The classic example

e Suppose we have to implement a function to

withdraw money from a bank account:

int withdraw(account, amount) {
int balance = get balance(account);

balance -= amount;
put_balance(account, balance);

return balance;

+
 Now suppose that you and your S.0O. share a bank

account with a balance of $100.00

— what happens if you both go to separate ATM
machines, and simultaneously withdraw $10.00

from the account?

Your Bank’s Computer

* Represent the situation by creating a separate thread
for each person to do the withdrawals
— have both threads run on the same bank mainframe:

int withdraw(account, amount) { int withdraw(account, amount) {

int balance = get_balance(account); int balance = get_balance(account);

balance -= amount; balance -= amount;

put_balance(account, balance); put_balance(account, balance);

return balance; return balance;

} }

Interleaved schedules

* The problem is that the execution of the two threads
can be interleaved, assuming preemptive scheduling:

Execution sequence
as seen by CPU

\

y

balance = get balance(account);

balance -= amount;

balance = get balance(account);
balance -= amount;

put_balance(account, balance);

put_balance(account, balance);

context switch

context switch

 What's the account balance after this sequence?
— who'’s happy, the bank or you?
 How often is this unfortunate sequence likely to

occur?

The crux of the matter

 The problem is that two concurrent threads (or processes)
access a shared resource (account) without any
synchronization

— creates arace condition
e output is non-deterministic, depends on timing

 We need mechanisms for controlling access to shared
resources in the face of concurrency

— SO we can reason about the operation of programs
e essentially, re-introducing determinism

e Synchronization is necessary for any shared data
structure

— buffers, queues, lists, hash tables, scalars, ...

What resources are shared?

 Local variables are not shared

— refer to data on the stack, each thread has its own
stack

— never pass/share/store a pointer to a local variable
on another thread’s stack!

 Global variables are shared

— stored in the static data segment, accessible by
any thread

e Dynamic objects are shared
— stored in the heap, shared if you can name it

10

Mutual exclusion

shared resources

« Mutual exclusion makes reasoning about program
behavior easier

— making reasoning easier leads to fewer bugs

e Code that uses mutual exclusion to synchronize its
execution Is called a critical section

— only one thread at a time can execute Iin the critical
section

— all other threads are forced to wait on entry

— when a thread leaves a critical section, another can
enter

We want to use mutual exclusion to synchronize access to

11

Critical section requirements

« Critical sections have the following requirements
— mutual exclusion
e at most one thread is in the critical section
— progress

o if thread T is outside the critical section, then T cannot
prevent thread S from entering the critical section

— bounded waiting (no starvation)

o if thread T is waiting on the critical section, then T will
eventually enter the critical section

— assumes threads eventually leave critical sections
 vs. fairness?
— performance

* the overhead of entering and exiting the critical section is
small with respect to the work being done within it

12

Mechanisms for building critical sections

Locks
— very primitive, minimal semantics; used to build others
e Semaphores
— basic, easy to get the hang of, hard to program with
e Monitors

— high level, requires language support, implicit
operations

— easy (easier) to program with; Java synchronized() as
an example

« Messages

— simple model of communication and synchronization
based on (atomic) transfer of data across a channel

— direct application to distributed systems

 We will survey the first three
13

Locks

 Alock is an object (in memory) that provides the
following two operations:
— acquire(): athread calls this before entering a critical section
— release(): athread calls this after leaving a critical section
e Threads pair up calls to acquire() and release()
— between acquire()and release(), the thread holds the lock
— acquire() does not return until the caller holds the lock
e at most one thread can hold a lock at a time (usually)
— so0: what can happen if the calls aren’t paired?
 Two basic flavors of locks
— spinlock
— blocking (a.k.a. “mutex”)

14

Using locks

int withdraw(account, amount) {
acquire(lock);
balance = get balance(account);
balance -= amount;
put_balance(account, balance);
release(lock);

return balance;

 What happens when green tries to acquire the lock?

critical
section

acquire(lock)

balance = get _balance(account);

balance -= amount;

acquire(lock)

put_balance(account, balance);
release(lock);

balance = get balance(account);

balance -= amount;
put_balance(account, balance);

release(lock);

 Why is the “return” outside the critical section?

— IS this ok?

15

Spinlocks

« How do we implement locks? Here’s one attempt:

struct lock {
int held = O;

by

void acquire(lock) { the caller “busy-waits™,
while (lock->held); < or spins, for lock to be
lock->held = 1; released = hence spinlock

}

void release(lock) {
lock->held = O;

}

e Why doesn’t this work?
— where Is the race condition?

16

Implementing locks (cont.)

e Problem is that implementation of locks has critical
sections, too!

— the acquire/release must be atomic

 atomic == executes as though it could not be
Interrupted

e code that executes “all or nothing”
 Need help from the hardware
— atomic instructions
 test-and-set, compare-and-swap, ...
» see text for examples
— disable/reenable interrupts
e to prevent context switches
e crude — and can only be done in the kernel

17

Summary so far

e Synchronization can be provided by locks, semaphores,
monitors, messages ...

e Locks are the lowest-level mechanism
— very primitive in terms of semantics — error-prone
— Implemented by spin-waiting (crude) or by disabling
Interrupts (also crude, and can only be done in the
kernel)

e |In our next exciting episode ...
— semaphores are a slightly higher level abstraction
 less crude implementation too
— monitors are significantly higher level

o utilize programming language support to reduce
errors

18

Semaphores

Semaphore = a synchronization primitive
— higher level of abstraction than locks

— Invented by Dijkstra in 1968, as part of the THE
operating system

A semaphore is:

— avariable that is manipulated through two operations,
P and V (Dutch for “test” and “increment”)
 P(sem) (wait)
— block until sem > 0, then subtract 1 from sem and
proceed

e V(sem) (signal)
— add 1 to sem
Do these operations atomically

19

Blocking In semaphores

Each semaphore has an associated queue of threads
— when P(sem) is called by a thread,

 If sem was “available” (>0), decrement sem and let thread
continue

 If sem was “unavailable” (<=0), place thread on associated
gueue; dispatch some other runnable thread

— when V(sem) is called by a thread

« if thread(s) are waiting on the associated queue, unblock one
— place it on the ready queue
— might as well let the “V-ing” thread continue execution
— or not, depending on priority
» otherwise (when no threads are waiting on the sem),
Increment sem
— the signal is “remembered” for next time P(sem) is called

Semaphores thus have history

20

Abstract implementation

— P/wait(sem)
e acquire “real” mutual exclusion

— iIf sem is “available” (>0), decrement sem; release “real”
mutual exclusion; let thread continue

— otherwise, place thread on associated queue; release “real”
mutual exclusion; run some other thread

— V/signal(sem)
e acquire “real” mutual exclusion

— iIf thread(s) are waiting on the associated queue, unblock one
(place it on the ready queue)

— if no threads are on the queue, sem is incremented
» the signal is “remembered” for next time P(sem) is called

* release “real” mutual exclusion
 [the “V-Ing” thread continues execution or is preempted]

21

Two types of semaphores

* Binary semaphore (aka mutex semaphore)
— sem is initialized to 1

— guarantees mutually exclusive access to resource
(e.g., a critical section of code)

— only one thread/process allowed entry at a time

« Counting semaphore
— sem is initialized to N
« N = number of units available

— represents resources with many (identical) units
available

— allows threads to enter as long as more units are
available

22

Usage

 From the programmer’s perspective, P and V on a binary
semaphore are just like Acquire and Release on a lock
P(sem)

do whatever stuff requires mutual exclusion; could conceivably
be a lot of code

V(éem)
— same lack of programming language support for correct usage

* Important differences in the underlying implementation, however

23

Semaphores vs. Locks

e Threads that are blocked by the semaphore P
operation are placed on queues, rather than busy-
waiting

e Busy-waiting may be used for the “real” mutual
exclusion required to implement P and V

— but these are very short critical sections — totally
Independent of program logic

24

Problems with semaphores (and locks)

 They can be used to solve any of the traditional
synchronization problems, but:

— semaphores are essentially shared global variables
e can be accessed from anywhere (bad software
engineering)
— there Is no connection between the semaphore and the
data being controlled by it

— used for both critical sections (mutual exclusion) and
for coordination (scheduling)

— no control over their use, no guarantee of proper usage
 Thus, they are prone to bugs

— another (better?) approach: use programming
language support

25

One More Approach: Monitors

A monitor is a programming language construct that supports
controlled access to shared data

— synchronization code is added by the compiler

* A monitor encapsulates:
— shared data structures
— procedures that operate on the shared data

— synchronization between concurrent threads that invoke those
procedures

« Data can only be accessed from within the monitor, using the
provided procedures
— protects the data from unstructured access

 Addresses the key usability issues that arise with semaphores

26

A monitor

waiting queue of threads

. . Proc A
trying to enter the monitor

> —>

Proc B

/' Proc C

operations (methods)

\ 4

at most one thread /
In monitor at a

time

Monitor facilities

o “Automatic” mutual exclusion
— only one thread can be executing inside at any
time
 thus, synchronization is implicitly associated
with the monitor — it “comes for free”

— If a second thread tries to execute a monitor
procedure, it blocks until the first has left the
monitor

e more restrictive than semaphores
e but easier to use (most of the time)

* But, there’s a problem...

28

Example: Bounded Buffer Scenario

Produce()

Consume() ||

« Buffer is empty
* Now what?

Example: Bounded Buffer Scenario

Produce()

Consume()

o Buffer is full
 Now what?

30

Condition variables

« A place to wait; sometimes called a rendezvous point

 “Required” for monitors
— So useful they’re often provided even when monitors aren’t
available

» Three operations on condition variables
— wait(c)
* release monitor lock, so somebody else can get in
« walit for somebody else to signal condition
 thus, condition variables have associated wait queues
— signal(c)
« wake up at most one waiting thread
* if no waiting threads, signal is lost
— this is different than semaphores: no history!
— broadcast(c)
« wake up all waiting threads

31

A monitor (including CVs)

wait queue for cond. var.
buff_empty

waiting queue of threads
trying to enter the monitor

—

at most one thread /

/

In monitor at a

Proc A

Proc B

Proc C

operations (methods)

time

32

Bounded buffer using (Hoare) monitors

Monitor bounded_buffer {
buffer resources[N];
condition not_full, not_empty;

produce(resource Xx) {
if (array “resources” is full)
wait(not_full);
Insert “x” in array “resources”
signal(not_empty);

}

consume(resource *x) {
if (array “resources” is empty)
wait(not_empty);

*X = get resource from array “resources”

signal(not_full);

}

33

Monitor Summary

e Language supports monitors
o Compiler understands them
— compiler inserts calls to runtime routines for
e monitor entry
e monitor exit
e signal
o Walit
— Language/object encapsulation ensures correctness

e Sometimes! With conditions you STILL need to
think about synchronization and state of monitor

Invariants on wait/signal
e Runtime system implements these routines
— moves threads on and off queues
— ensures mutual exclusion!

34

