
CSE 410
Computer Systems

Hal Perkins
Spring 2010

L t 15 PLecture 15 – Processes

Reading and ReferencesReading and References

• Reading g
– Chapter 3 through 3.3, Operating System

Concepts, 7th or 8th ed., Silberschatz, Galvin, and
GGagne

2

Process ManagementProcess Management

• This lecture begins a series of topics on processes, g p p
threads, and synchronization
– this is perhaps the most important part of the OS

lectureslectures
• Today: processes and process management

– what are the OS units of execution?
– how are they represented inside the OS?
– how is the CPU scheduled across processes?

what are the possible execution states of a process?– what are the possible execution states of a process?
• and how does the system move between them?

3

Example OS in operationExample OS in operation

iTunesPhotoshopFirefoxA
pp

s

Acrobat

Application Interface (API)

iTunesPhotoshopFirefox Portable
U

se
r A Acrobat

File
Systems

Memory
Manager

Process
Manager

Network
Support

g
Sy

st
em

e

Device
Drivers

Interrupt
Handlers

Boot &
Init

O
pe

ra
tin

g

Hardware (CPU, devices)

Hardware Abstraction Layer

(,)

4

The ProcessThe Process

• The process is the OS’s abstraction for executionp
– the unit of execution
– the unit of scheduling

th d i (ti) ti t t– the dynamic (active) execution context
• compared with program: static, just a bunch of bytes
• there may be ≥ 1 process running the same programthere may be ≥ 1 process running the same program

• Process is often called a job, task, or sequential process
– a sequential process is a program in execution

• defines the instruction-at-a-time execution of a
program

5

What’s in a Process?What s in a Process?

• A process consists of (at least):
– an address space
– the code for the running program
– the data for the running program
– an execution stack and stack pointer (SP)

• traces state of procedure calls made
– the program counter (PC), indicating the next instructionp g () g
– a set of general-purpose processor registers and their values
– a set of OS resources

• open files, network connections, sound channels, …p , , ,
• The process is a container for all of this state

– a process is named by a process ID (PID)
• just an integerjust an integer

6

A process’s address spaceA process s address space

0xFFFFFFFF stackstack
(dynamic allocated mem)

SP

address space heap
(dynamic allocated mem)

d

static data
(data segment)

0x00000000

code
(text segment)

PC

7

Process statesProcess states

• Each process has an execution state, which indicates
h t it i tl d iwhat it is currently doing

– ready: waiting to be assigned to CPU
• could run, but another process has the CPU

i ti th CPU– running: executing on the CPU
• is the process that currently controls the CPU
• pop quiz: how many processes can be running

sim ltaneo sl ?simultaneously?
– waiting: waiting for an event, e.g. I/O

• cannot make progress until event happens
A t it f t t t t t• As a process executes, it moves from state to state
– UNIX: run ps, STAT column shows current state
– which state is a process in most of the time?

8

Process state transitionsProcess state transitions

Ne Read
create

New Ready

W iti

I/O
done

h d lunschedule

Terminated Running

Waiting

kill
I/O

scheduleunschedule

g I/O,
page fault, etc.

• What can cause schedule/unschedule
transitions?

9

Process data structuresProcess data structures

• How does the OS represent a process in the kernel?
– at any time, there are many processes, each in its own

particular state
– the OS data structure that represents each is called the

process control block (PCB)process control block (PCB)
• PCB contains all info about the process

– OS keeps all of a process’ hardware execution state in
the PCB when the process isn’t runningthe PCB when the process isn t running

• PC
• SP
• registers• registers

– when process is unscheduled, the state is transferred
out of the hardware into the PCB

10

PCBPCB

• The PCB is a data structure with many, many fields:
– process ID (PID)
– execution state
– program counter, stack pointer, registers
– memory management info
– UNIX username of owner
– scheduling priorityg p y
– accounting info
– pointers into state queues

• In linux:
– defined in task_struct

(include/linux/sched.h)
– over 95 fields!!!

11

Simple Process Control Block

process state

process number

program counter

stack pointer

copies of general-purpose registers

memory management infomemory management info

username of owner

queue pointers for state queues

scheduling info (priority, etc.)

accounting info

12

PCBs and Hardware StatePCBs and Hardware State

• When a process is running, its hardware state is inside the
CPUCPU
– PC, SP, registers
– CPU contains current values

Wh th OS t i (t it i th• When the OS stops running a process (puts it in the
waiting state), it saves the registers’ values in the PCB
– when the OS puts the process in the running state, it

loads the hardware registers from the values in thatloads the hardware registers from the values in that
process’ PCB

• The act of switching the CPU from one process to another
is called a context switch
– timesharing systems may do 100s or 1000s of

switches/sec.
– takes about 5 microseconds on today’s hardware

13

State queuesState queues

• The OS maintains a collection of queues that q
represent the state of all processes in the system
– typically one queue for each state

• e.g., ready, waiting, …
– each PCB is queued onto a state queue according

to its current stateto its current state
– as a process changes state, its PCB is unlinked

from one queue, and linked onto another

14

State queuesState queues

head ptr firefox pcb emacs pcb ls pcb

Ready queue header

p
tail ptr

cat pcb firefox pcbhead ptr

Wait queue header

p
tail ptr

• There may be many wait queues, one for each type
f it (ti l d i ti)of wait (particular device, timer, message, …)

15

PCBs and State QueuesPCBs and State Queues

• PCBs are data structures
– dynamically allocated inside OS memory

• When a process is created:
– OS allocates a PCB for it
– OS initializes PCB

OS C– OS puts PCB on the correct queue
• As a process computes:

OS moves its PCB from queue to queue– OS moves its PCB from queue to queue
• When a process is terminated:

– OS deallocates its PCBOS deallocates its PCB

16

Process creationProcess creation

• One process can create another processp p
– creator is called the parent
– created process is called the child
– UNIX: do ps, look for PPID field
– what creates the first process, and when?

f• In some systems, parent defines or donates
resources and privileges for its children
– UNIX: child inherits parents userID field etcUNIX: child inherits parents userID field, etc.

• when child is created, parent may either wait for it to
finish, or it may continue in parallel, or both!

17

UNIX process creationUNIX process creation

• UNIX process creation through fork() system call
– creates and initializes a new PCB
– creates a new address space
– initializes new address space with a copy of the entireinitializes new address space with a copy of the entire

contents of the address space of the parent
– initializes kernel resources of new process with

resources of parent (e g open files)resources of parent (e.g. open files)
– places new PCB on the ready queue

• the fork() system call returns twice
i t th t d i t th hild– once into the parent, and once into the child

– returns the child’s PID to the parent
– returns 0 to the child

18

fork()fork()

int main(int argc, char **argv)
{

char *name = argv[0];
int child pid = fork();int child_pid fork();
if (child_pid == 0) {

printf(“Child of %s is %d\n”,
hild id)name, child_pid);

return 0;
} else {

printf(“My child is %d\n”, child_pid);
return 0;

}}
}

19

outputoutput

% gcc -o testparent testparent.cg p p
% ./testparent
My child is 486
Child of testparent is 0
% ./testparent

i iChild of testparent is 0
My child is 486

20

Fork and execFork and exec

• So how do we start a new program, instead of just forking
th ld ?the old program?
– the exec() system call!
– int exec(char *prog, char ** argv)

• exec()
– stops the current process
– loads program ‘prog’ into the address spaceloads program prog into the address space
– initializes hardware context, args for new program
– places PCB onto ready queue

t d t t !– note: does not create a new process!
• what does it mean for exec to return?

– what happens if you “exec csh” in your shell?
– what happens if you “exec ls” in your shell?

21

UNIX shellsUNIX shells

int main(int argc, char **argv)
{
while (1) {

char *cmd = get_next_command();
int child pid = fork();int child_pid = fork();
if (child_pid == 0) {

manipulate STDIN/STDOUT/STDERR fd’s
exec(cmd);
panic(“exec failed!”);

} else {
wait(child_pid);

}
}

}

22

It’s not just UnixIt s not just Unix…

• We’re using Unix for a lot of our examples because it g p
is widely used (Linux) and all other systems have to
do something quite similar

B t b t th– But maybe not the same way
– For example, there may be a way to launch a

process directly from a program instead of forkingprocess directly from a program instead of forking
the current process followed by an exec()

– No matter how it’s done, we need a new address
PCB tspace, PCB, etc.

23

Windows CreateProcess functionWindows CreateProcess function

• Open the program file to be executedp p g
• Create the Windows executive process object
• Create the initial thread (stack, context, ...)
• Notify Win32 subsystem about new process
• Start execution of the initial thread

C ()• Complete initialization (eg, load dlls)
• Continue execution in both processes

FromInside Windows 2000

24

